
  

Lists: implementation/implications

● For primitive data types (e.g. characters, integers, reals, 
booleans), items can be held in a simple 32- or 64-bit cell
● For lists, however, lisp adopts a linked-list approach, where 
it stores a pointer to the front of the list (nil if the list is empty)
● Each list element is represented as two parts: the value of 
that element (accessible through car) and a pointer to the 
next element (accessible through cdr)
● If a list element is itself a list, then the “value of the element” 
would be a pointer to the front element of that list



  

Pointer-based representation

● Consider (defvar L ‘(1 2 3 4))

1

L

2

3

4 nil

(car L)

(cdr L) refers to list of remaining elements

(car (cdr L))

(cdr (cdr L))



  

Nested lists

● (defvar L ‘((1 2) (3 4)))

nil

1 2 nil 3

L

4 nil

(car (car L))

(car L) (cdr L) (car (cdr L))

(car (car (cdr L)))

(cdr (cdr L))



  

setf on car, cdr

● (car X) and (cdr X) can be altered with setf
(defvar L ‘(1 2 3))

(setf (car L) 5)

(setf (cdr (cdr L)) nil)

1 2 3 nil

5 2 3 nil

5 2 nil

L

L

L



  

Shallow copy of a list

● (defvar L ‘(1 2))  (defvar X L)

1 2 nil

● (setf (car X) 10) changes front element to 10 for L as well, 
since L and X really refer to the same internal list

● (setf X 10) changes X to 10, has no effect on list L refers to

L X



  

Passing a list to a function

(defvar L ‘(1 2 3))

(defun f ( X ) (setf X 10))

(defun g ( X ) (setf (car X) 10))

(f L) ; no effect

(g L) ; changes first element to 10

L X

1 2 3 nil



  

(cons e L)

(defvar L ‘(1 2 3))

(defun X (cons 4 L))

4
L

X

1 2 3 nil

(cons 4 L)



  

Circular lists

● we can create circular lists
(defvar L ‘(10 20 30))

(setf (cdddr L) L)  ; make end of L point to front of L

(nth 3 L)           ; returns 10

(nth 4 L)           ; returns 20, etc

(format “~A~%” L)   ; goes into infinite loop

● Can turn on cycle-detection so it doesn’t infinite loop
(let ((*print-circle* t)) (format t “~A~%” L))

; actually prints “#0=(10 20 30 . #0#)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

