Macros

* Allow programmer to tell compiler how to rewrite source
code just prior to actual compilation

* Lets programmer use syntax in the source code that isn't a
built-in part of the language

e Support for macros, how much flexibility/control programmer
has for re-writes, varies widely across languages, e.g.

* C: #defines (preprocessor directives)
e C++ templates
* Lisp macros (seen before study break)



C preprocessor directives

» #defines for simple text substitution, e.g.
#define Pi 3.14
X = Pi; Il replaced with X = 3.14; by preprocessor

 allowed C to give constant-like behaviour when language
did not directly support constants (programmer #defined to
associate name with value, used name in rest of program)

* not the same as constants: not scoped, and actually
performs text substitution prior to compilation



Built-in #defines

* A number of pre-defined #defines, handy for debugging
« __FILE__ name of current file

- __LINE__ humber of current line in file
* __DATE__ current date

« __TIME__ current time

* plus many others...



#undef

 Can “undefine” a previously defined value (possibly to
redefine with new value afterward)

#define Pi 3.14
#undef Pi
#define Pi 3.1415



C pre-processor (cont.)

* Conditional code inclusions at compile time using #ifdef,
#ifndef (e.g. “guards” in header files), can also be used to
Include/exclude groups of code at compile time, e.g.

#ifdef _unix__

Code to use when compiled on Tinux
#elif defined _WIN32

Code to use when compiled on windows
#endif



C preprocessor macros

* Parameterized #defines to give appearance of functions
#define swap(a,b) { int tmp = a; a = b; b = tmp; }
swap(x,y); // replaced with

// {1 int tmp = X; X =y; y = tmp; }
* Potential name clashes, type mismatches, e.qg.
float tmp;
int t;
swap(tmp, t); // preprocessing replaces with
// {1 1nt tmp = tmp; tmp = t; t = tmp; }



LIne continuation

e Can create multi-line macros by ending each line (except
the last one) with a \

#define intswap(x,y) { \
int tmp = x; \
X =y; \
y = tmp; \



Text substitution expands possiblilities

e Can do some things with preprocessor macro you couldn’t
with actual function call, e.g. “pass” types
#define swap(t,x,y) { t tmp = x; x =y; y = tmp; }
swap(float, a, b); // becomes
// { float tmp = a; a = b; b = tmp; }

* ## operation can be used to concatenate text, e.g.
#define swap(t,x,y) { t x##y = X; X = y; y = x##y; }
swap(float, foo, blah); // becomes

// { float fooblah = foo; foo = blah; blah = fooblah; }



C++ templates

e Common use is to create generic functions/classes
(programmer creates skeletal version using identifiers instead of data
types, compiler identifies correct types to use and creates/fills in versions
of the function/class that are actually needed, based on rest of source
code)

* Can also be used to create variadic functions (next session)

* Can also be used to create functions that run at compile time
to compute content to be used during compilation



C++ template programming

* Assuming you'’re used to “normal” use of templates
* Will cover templates for variadic functions shortly

 Here we’ll look at templated functions that actually execute

during preprocessing, and can return constants that can be
used in rest of compilation process\

 The compiletime functions can only take constants (or
constant expressions) as parameters, can only return
constants (or constant expressions)

* New type used: constexpr



Compile time computation example

* e.g. create a function that runs at compile time, takes a
(constant) struct and a (constant) int as parameters and
returns a (constant) fraction
struct Fraction { int n; 1int d; }
const Fraction f = { 11, 3 };
constexpr Fraction scale(const Fraction f, const int s) {

const Fraction r = { f.n*s, f.d };
return r;

}

const Fraction x = scale(f, 3); // runs at compile time



Uses of compile time processing

 this is actually turing complete, so could theoretically write
entire programs that executed during compilation

* In practice, intent is to allow automated processing of
constant data sets/values

* e.g. you #include some .h file with lots of data of some
form, then use your compile-time functions to compute
relevant metadata about it ... let the compiler do the work



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

