

Macros

● Allow programmer to tell compiler how to rewrite source
code just prior to actual compilation
● Lets programmer use syntax in the source code that isn’t a
built-in part of the language
● Support for macros, how much flexibility/control programmer
has for re-writes, varies widely across languages, e.g.

● C: #defines (preprocessor directives)
● C++ templates
● Lisp macros (seen before study break)

C preprocessor directives

● #defines for simple text substitution, e.g.

#define Pi 3.14

X = Pi; // replaced with X = 3.14; by preprocessor

● allowed C to give constant-like behaviour when language
did not directly support constants (programmer #defined to
associate name with value, used name in rest of program)

● not the same as constants: not scoped, and actually
performs text substitution prior to compilation

Built-in #defines

● A number of pre-defined #defines, handy for debugging
● __FILE__ name of current file
● __LINE__ number of current line in file
● __DATE__ current date
● __TIME__ current time
● plus many others...

#undef

● Can “undefine” a previously defined value (possibly to
redefine with new value afterward)
#define Pi 3.14

....

#undef Pi

#define Pi 3.1415

C pre-processor (cont.)

● Conditional code inclusions at compile time using #ifdef,
#ifndef (e.g. “guards” in header files), can also be used to
include/exclude groups of code at compile time, e.g.

#ifdef __unix__

Code to use when compiled on linux

#elif defined _WIN32

Code to use when compiled on windows

#endif

C preprocessor macros

● Parameterized #defines to give appearance of functions
#define swap(a,b) { int tmp = a; a = b; b = tmp; }

swap(x,y); // replaced with

 // { int tmp = x; x = y; y = tmp; }

● Potential name clashes, type mismatches, e.g.
float tmp;

int t;

swap(tmp, t); // preprocessing replaces with

 // { int tmp = tmp; tmp = t; t = tmp; }

Line continuation

● Can create multi-line macros by ending each line (except
the last one) with a \
#define intswap(x,y) { \

 int tmp = x; \

 x = y; \

 y = tmp; \

}

Text substitution expands possibilities

● Can do some things with preprocessor macro you couldn’t
with actual function call, e.g. “pass” types
#define swap(t,x,y) { t tmp = x; x = y; y = tmp; }

swap(float, a, b); // becomes

 // { float tmp = a; a = b; b = tmp; }

● ## operation can be used to concatenate text, e.g.
#define swap(t,x,y) { t x##y = x; x = y; y = x##y; }

swap(float, foo, blah); // becomes

// { float fooblah = foo; foo = blah; blah = fooblah; }

C++ templates

● Common use is to create generic functions/classes
(programmer creates skeletal version using identifiers instead of data
types, compiler identifies correct types to use and creates/fills in versions
of the function/class that are actually needed, based on rest of source
code)

● Can also be used to create variadic functions (next session)
● Can also be used to create functions that run at compile time

to compute content to be used during compilation

C++ template programming

● Assuming you’re used to “normal” use of templates
● Will cover templates for variadic functions shortly
● Here we’ll look at templated functions that actually execute

during preprocessing, and can return constants that can be
used in rest of compilation process\

● The compiletime functions can only take constants (or
constant expressions) as parameters, can only return
constants (or constant expressions)

● New type used: constexpr

Compile time computation example

● e.g. create a function that runs at compile time, takes a
(constant) struct and a (constant) int as parameters and
returns a (constant) fraction
struct Fraction { int n; int d; }

const Fraction f = { 11, 3 };

constexpr Fraction scale(const Fraction f, const int s) {

 const Fraction r = { f.n*s, f.d };

 return r;

}

const Fraction x = scale(f, 3); // runs at compile time

Uses of compile time processing

● this is actually turing complete, so could theoretically write
entire programs that executed during compilation

● in practice, intent is to allow automated processing of
constant data sets/values

● e.g. you #include some .h file with lots of data of some
form, then use your compile-time functions to compute
relevant metadata about it ... let the compiler do the work

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

