
  

Dynamic memory organization
● Considering one possible approach (gnu) to organize 
dynamic memory on the system side
● Give each application its own unique (virtual) memory space
● Allow that space to be subdivided into space for 
threads/child processes the application may spawn
● Maintain data with each chunk of memory, free or in use, to 
track its size and status (support the allocate/free cycle)
● Maintain data structures to organize the chunks of free 
memory to effectively respond to allocate/free requests



  

Arenas

● Each application given an “arena”, which controls the 
memory space for that application

● Arena has it’s associated memory stored in chunks in a 
heap (it controls division into chunks)

● Arena can subdivide its space into smaller arenas (e.g. 
use a chunk of its heap to create an arena for a child 
process) and/or smaller heaps (i.e. use a chunk of its heap 
to create another, smaller heap, for another purpose)



  

Heaps

● Heap is section of memory, divided into chunks, each of 
which can be either free or allocated to application

● Heap can divide chunks into multiple smaller chunks, or 
coalesce adjacent free chunks into a single larger free 
chunk as needed

● Big “top” chunk of memory on heap kept free as long as 
possible, for cases when allocate requests can’t be 
satisfied from the other chunks



  

Chunks

● Allocated chunks need to have the space the user 
requested, plus administrative data to support allocation 
and free operations

● Free chunks mostly empty, but part of space needs to be 
used for similar administrative information

● Admin info usually at beginning/end of chunks, so they are 
easily accessible by allocate/release routines



  

Allocated chunk admin data

● At start of chunk:
● Size (bytes)
● Flag indicating which arena controls it
● Flag indicating if directly memory mapped (biiiig chunks)
● Flag indicating if preceding chunk is free or not

● Followed by user content



  

Free chunk admin data

● At start of chunk:
● Total size of chunk

● Arena flag
● Is it memory mapped
● Is preceding chunk free or not

● Pointer to next chunk
● Pointer to previous chunk

● Most of chunk is unused while free
● At end of chunk:

● Size (again)


	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

