Dynamic memory organization

dynamic memory on the system side
* Give each application its own unique (virtual) memory space

* Allow that space to be subdivided into space for
threads/child processes the application may spawn

* Maintain data with each chunk of memory, free or in use, to
track its size and status (support the allocate/free cycle)

* Maintain data structures to organize the chunks of free
memory to effectively respond to allocate/free requests



Arenas

* Each application given an “arena”, which controls the
memory space for that application

* Arena has it's associated memory stored in chunks in a
heap (it controls division into chunks)

* Arena can subdivide its space into smaller arenas (e.qg.
use a chunk of its heap to create an arena for a child
process) and/or smaller heaps (i.e. use a chunk of its heap
to create another, smaller heap, for another purpose)



 Heap is section of memory, divided into chunks, each of
which can be either free or allocated to application

* Heap can divide chunks into multiple smaller chunks, or
coalesce adjacent free chunks into a single larger free
chunk as needed

* Big “top” chunk of memory on heap kept free as long as
possible, for cases when allocate requests can't be
satisfied from the other chunks



Chunks

* Allocated chunks need to have the space the user

requested, plus administrative data to support allocation
and free operations

* Free chunks mostly empty, but part of space needs to be
used for similar administrative information

* Admin info usually at beginning/end of chunks, so they are
easily accessible by allocate/release routines



Allocated chunk admin data

* At start of chunk:
e Size (bytes)
* Flag indicating which arena controls it
* Flag indicating if directly memory mapped (biiiig chunks)
* Flag indicating if preceding chunk is free or not
* Followed by user content



Free chunk admin data

* At start of chunk:
« Total size of chunk
* Arena flag
* Is it memory mapped
* Is preceding chunk free or not
* Pointer to next chunk
* Pointer to previous chunk

 Most of chunk is unused while free

* At end of chunk:
* Size (again)



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

