

Object oriented languages

● Start of year mentioned three paradigms: imperative,
functional, and OO
● Covered functional in some detail, trust you’ve got
reasonable background in use of imperative and OO
● Want to spend some time looking at relevant aspects of OO

OO Paradigm

● Based on collections of interacting objects, each with its own fields
and methods, where an object’s methods have access to that
objects fields

● Interaction between objects handled by some form of
communication (e.g. method calls)

● In pure OO, everything is an object – there are no stand-alone
functions or primitive data types

● Most “OO” languages are actually hybrids (e.g. C++, Java, etc),
there are a few pure OO languages (e.g. Smalltalk, Ruby)

OO features

● Begins with abstract data types, i.e. encapsulating data
and the operations on it, with public interface and hidden
implementation

● Adds inheritance, in which objects inherit fields/methods
from ancestor classes, possibly over-riding with local
replacements

● Adds dynamic dispatch, in which method calls are bound
to actual code at run time, rather than statically

Inheritance

● Allows top-down design of object heirarchy, with successively greater
specialization at each level

● Improves modularity, abstraction, reuse, maintainability
● Possible marginal loss of time/space efficiency
● May include features for access/permission restriction of inherited

fields/methods
● May include provisions to override inherited fields/methods with local

versions
● Might allow multiple inheritance (multiple immediate parent classes)

Dynamic dispatch

● Called method is determined at run time, not compile time
● Suppose we have ParentClass and ChildClass, each with their own

version of method foo, and the following method/call somewhere,

When f runs, which version of foo should be executed? Static dispatch
would use ParentClass, dynamic dispatch would use ChildClass

void f(ParentClass x) { x.foo(); }

....

ChildClass c;

f(c);

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5

