

Records, structures

● Groupings of fields of various types
● Fields identified by name, not position
● Fields can generally be of any type (even other records)
● Declaration requires specification of fields, might require
specification of field types
● Field access requires specification of the record variable
and its field

Operations

● Assigning or copying field values

● Assigning or copying entire record (could be shallow or deep copy)

● Copying of compatible records may be possible (e.g.

struct TypeA { int field1, field2, field3; };

struct TypeB { int entry1, entry2; };

TypeA x; TypeB y;

What happens if we try x = y; or y = x;

● Changing structure of record (adding or removing fields)

● Get list of fields of a record (especially if fields can be added/removed)

Storage of records/structures

● As with arrays, are they stored on stack or in heap
● As with arrays, what happens if we resize (add new fields)
● Compiler replaces HLL field accesses with access to memory at a

computed offset from the start of the record
● Memory alignment issues to consider within the record, e.g.

struct MyData { char c; long i; char d; float f };

If we store fields in sequence, we need to insert padding to adhere to
memory alignment rules, or compiler may rearrange fields from
largest to smallest

Passing or returning records

● Similar issues as when we considered passing or returning
arrays (do we pass a full copy, or a reference?) with similar
implications

● Languages do not necessarily apply the same rules to
records as arrays (e.g. may pass address of arrays, but full
copies of records)

	Slide 1
	Slide 2
	Slide 3
	Slide 4

