Records, structures

* Groupings of fields of various types
* Fields identified by name, not position
* Fields can generally be of any type (even other records)

* Declaration requires specification of fields, might require
specification of field types

* Field access requires specification of the record variable
and its field



Operations

Assigning or copying field values

Assigning or copying entire record (could be shallow or deep copy)

Copying of compatible records may be possible (e.g.
struct TypeA { int field1, field2, field3; };
struct TypeB { int entryl, entry2; };
TypeAx; TypeB'Yy;
What happens if we try x =y; ory = X;

Changing structure of record (adding or removing fields)

Get list of fields of a record (especially if fields can be added/removed)



Storage of records/structures

As with arrays, are they stored on stack or in heap
As with arrays, what happens if we resize (add new fields)

Compiler replaces HLL field accesses with access to memory at a
computed offset from the start of the record

Memory alignment issues to consider within the record, e.g.
struct MyData { char c; long I; char d; float f };

If we store fields in sequence, we need to insert padding to adhere to

memory alignment rules, or compiler may rearrange fields from
largest to smallest



Passing or returning records

e Similar issues as when we considered passing or returning
arrays (do we pass a full copy, or a reference?) with similar
Implications

* Languages do not necessarily apply the same rules to
records as arrays (e.g. may pass address of arrays, but full
copies of records)



	Slide 1
	Slide 2
	Slide 3
	Slide 4

