

Regular grammars and tokenizing

● Regular grammars (and regular expressions) are powerful
enough to describe the basic tokens of a language
● Tokens include the symbols, operators, keywords,
identifiers, and literals of a language (e.g. rules for a valid
integer, rules for a valid identifier, list of valid operators, etc)
● You have most likely encountered regular expressions, and
different languages’ syntax for them, multiple times already

Regular grammar rules

● Will leave the proofs/formality for CSCI 320, in 330 we’re
interested in the application

● First we need an alphabet: the basic list of characters or
symbols that are valid in our language

● Then we need rules for combining those symbols into valid
tokens

● We’ll use lex-style syntax for our regular grammar rules, and
simply assume our alphabet is the set of ascii characters

Grammar rules

● We can describe a keyword or operator made up of a fixed
character sequence with a text string, e.g. “void”, “+”, “==”

● specify any one of a set of characters using square
brackets, e.g [aeiou] matches any one of a, e, i, o, or u

● specify any character in a range is valid using square
brackets, e.g. [a-f], [0-9], [a-zA-Z0-9_]

● Specify anything except a set or range of characters is
valid by using ^ inside [], e.g. [^a-z], [^aeiou]

Pattern repetition

● We can specify a pattern can repeat a certain number of
times

(pattern)? means 0 or 1 times

(pattern)* means 0 or more times

(pattern)+ means 1 or more times

(pattern){m,n} means m to n times, inclusive
● We can specify either of a choice of patterns is valid

(pattern1) | (pattern2)

Examples

● A positive integer is one or more digits

[0-9]+
● An identifier begins with either an underscore or an

alphabetic character, and is then followed by any number
of alphanumeric characters or underscores

[a-zA-Z_][a-zA-Z0-9_]*
● The logical and operator is &&

“&&”

Ambiguity

● What if our tokens overlap?
● e.g. if we specify “foo” is a keyword in the language but

variable names can be anything alphabetic
● Either (a) we ensure our grammar rules are constructed so

they don’t overlap, or (b) the tools have a fixed order to
apply the grammar rules – e.g. check if it’s a keyword first,
and if not then check the other possibilities

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

