Selection in lisp

* Lisp provides many functions to select actions based on
true/false conditions

* if Is used for if/else functionality

* cond Is used for chains of if/else if/else if/.../else

 case Is used much like a C switch statement

* typecase Is like case, but based on an item’s data type

* when allows you to do multiple things if a condition is true

* unless allows you to do multiple things if a condition is false



If for selection In lisp

* The If function syntax is (if condition trueval falseval)

e |f the condition evaluates to true then the trueval is
returned, otherwise the falseval is returned

* The falseval defaults to nil if omitted
* Any value or function call is valid for the trueval/falseval

 Example: if X Is a number return its square root, otherwise
return the string “not a number”:

* (if (numberp x) (sqrt x) “not a number”)



Nested if's

e Suppose we wanted functionality like:
1f x 1s a number
1f x < 0 return sqrt(-x)
else return sqrt(x)
else if x is a string return length(x)
else return nil

* One solution:
(if (numberp x)
(if (< 0 x) (sgrt (- x)) (sqrt x))
(if (string x) (length x) nil))



Seqguences of If/else-Ifs

e Suppose we want functionality like
If (a) w
Else if (b) x
Else if (c) y
Else z

e Could use nested If's:
(ifaw
(if b x

(if cy z)))



Cond: alternative to nested If's

Cond is meant as an alternative to the nested-if syntax

You list a series of pairs, for each pair there is a condition and
then the value to return if the condition is true

The cond returns the result of the first match
(cond

(a w)

(b x)

(cy)

(t 2))

Note the t as the final condition acts like a final else



Cond example

; sample cond layout, note the bracketting

(cond
((not (numberp x)) x) ; if x isn’t a number return x
((< 0 x) (* x 10)) : else if x<0 return 10* x

(t (x - 5))) > else return x-5



Compound expressions

* Boolean expressions and, or, not supported, e.g.
* (and x vy z)

e (orabcdef)

* (not x)

 (and (not (ora b c)) (or xy z))



When blocks

 When allows you to test a condition and do multiple things
If it is true, when’s return value is the last return value in
the block

(when (< x 0)
(format t “~A negative, replacing with abs value~%")
(setf x (- x)))



Unless blocks

* Unless allows you to perform multiple actions if a condition
IS false

(unless (< x 0)
(format t “setting y to root x~")

(setf y (sqrt x)))



Case statements

e Act much like a switch in C/C++
(case X
(0 (format t “x i1s 07))
(“foo” (format t “x 1is foo”))
(otherwise (format t “x i1s something else”)))

* Basically like a cond where each test condition is “does X
equal this?”



Typecase statements

* Like case, but works on type of item instead of its value
(typecase x
(string (format t “x is a string”))
(number (format t “x is a number))
(t (format t “x 1s something else”)))




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

