

Variadic functions in C and C++

● We’ve seen variadic functions in lisp using &rest

● What about C/C++?

● C makes use of a set of macros (from stdarg.h)

● C++ makes use of templated functions

● What might the underlying implementation look like (i.e. on
the system stack)?

Internal implementation

● We usually find parameters at the top of the stack frame
for a function call

● Suppose compiler simply adds one extra parameter at the
very top that gives the number of parameters for the
variadic part

● The callee then knows how many params it was passed
● As with most params, where the function has a positional

reference to a variadic parameter, the compiler computes
the correct offset to that parameter’s position and uses that

Variadic functions in C

● Makes use of variety of preprocessor macros in stdarg.h
● Syntax for declaring function uses an int followed by ...
double f(int n, ...) // example f returning a double

● When calling the function we pass a count of how many
other parameters are being passed, then the rest, e.g.
x = f(3, 27, 17, 8); // 3 is count of remaining params

● Most of the work is handled in the function implementation

Function implementation

● Data type for argument list is va_list
● Functions to access the list are va_start, to initialize, and

va_arg, to access next argument in list
● va_end is used to clean up at the end
double f(int n, ...) {

 va_list arglist;

 va_start(arglist, n); // sets up list storage

 // usage will go here

 va_end(arglist); // deallocates argument list storage

}

Accessing individual parameters

● access elements one at a time, in sequence, using va_arg
● Must pass argument list and expected data type
● Limited data types supported, ideally use long or double and

type cast further if needed
double e; // expecting params to be doubles

e = va_arg(arglist, double); // get first, do whatever with it

for (int i = 1; i < n; i++) {

 e = va_arg(arglist, double); // get next

 // now can do whatever with e

}

The C preprocessor solution

● the macros in stdarg.h actually rewrite the function calls
prior to compilation

● functional, but clearly not an ideal solution, especially due
to all the type casting

Variadic functions in C++

● C++ uses techniques involving templated functions instead of
the C-style use of stdarg.h

● requires two templated versions of the variadic function:
● one base case with a fixed number of parameters (the

minimum required number of parameters)
● one with a variable number of parameters that processes a

fixed number of the parameters and makes a recursive call
● The preprocessor uses the templates to build the necessary

set of “real” functions that are run during execution

Example: sum

● Function to take the sum of an arbitrary number of
parameters, e.g.
x = sum(10, 1.5, 17.3, 300, 174);

x = sum(0.1, 23);

● Will write one templated version of sum that takes one
parameter

● Will write one (recursive) templated version of sum that takes
1 parameter plus a variable number of others

Basic (non-recursive) version

● Takes a single parameter, computes and returns result
template <typename T>

T sum(T x) {

 return x;

}

● Note that it’s templated, so can be any data type

Recursive (general) case

● Take one fixed parameter, and number of additional args
● Express solution using a recursive call, need to template the

type for the fixed parameter and the variadic type
template <typename T, typename... Args>

T sum(T x, Args... args) {

 return x + sum(args...);

}

● Note the ... uses carefully (easy syntax errors to make)

Pros/cons

● templated, so more flexible w.r.t. data types
● data types used must still be compatible with data types

used in the function implementations
● need to be able to express the solution as a recursive call

with a smaller number of parameters (i.e. need to be able
to “peel off” and process a fixed number of parameters
with each call)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

