IR trees/graphs

« Various possible tree/graph intermediate representations:
» Parse tree: directly based on grammar of the source language
» Syntax tree: abstract from parse tree (less language dependent)

* Dependency graph: show heirarchy of declared/defined items,
and which ones depend on which others

» Control flow graphs: divide code into uninterrupted blocks of
code, with directed edges indicating possible flow between them

 Call graphs: nodes for procedures, directed edges indicate calls

Parse trees vs syntax trees

« Attempt to abstract data and operations away from

language specific grammar rules

< I/
Parse tree add
/adg \‘ /\\ w:\ \Va|\/
- op o
< L@
| | [<
T I
// \\ Ay val | - \Z/
~val | \7 X/,\
- Y \} int
EaY @
L <O

(e

+

& T

B oz

\}\/« <
x 13
A

X

\\\77///“
Abstract idea

Directed acyclic syntax graphs

« Reduce size by identifying/reusing common subtrees
* (a-(al(b-c))) + ((b-C)*d)

/\/\/\ \
/ -/\\
\/

/\ /\

\/ <&

Syntax DAGs

* Need an effective way to recognize when common
subtrees exist, ideally asap during construction

* Introduces many possible language-independent
optimizations, e.g.
- in expressions: store result of subtree in a temp variable rather
than recomputing

- if subtree represents a block of statements then replace with
callable function)

Tree construction from grammar

e Suppose we build our tree with two kinds of nodes:

- leaf: holds the tokens in our source grammar
- node: internal node, corresponding to nonterminals

e For each grammar rule, we define a rule on how to build
the appropriate tree node/leaf

* For top-down derivation, we start with a node for our top
level nonterminal, and on each rule application we apply
the appropriate construction

Example: construction rules

expr-->addx expr.node = addx.node

addx--> addx aop multx addx.node = new node(aop.node, addx.node, multx.node)

addx --> multx addx.node = multx.node
multx --> multx mop valx multx.node = new node(mop.node, multx.node, valx.node)
multx --> valx multx.node = valx.node

valx.node = new leaf (VAR, VAR.txt)
valx --> VAR | NUM | 1ode = new leaf (NUM, NUM.val)
valx -->'(* expr ')’ valx.node = new node('(’, expr.node, '))
OREER aop.node = new leaf('+')
aop -- | - aop.node = new leaf('-')
mop > "' | '/ mop.node = new leaf(™')

mop.node = new leaf('/")

Array-of-records implementation

Need a way to represent our leaf/node collection, e.g.

- leaf record type
- node record type
- keep an array of records (and counter)

Each leaf/node thus has a unique index value (array pos)

Cross references between nodes can use the index (giving
small storage, fast lookups)

Often referred to as value-number method, each node has
uniqgue associated index number

Value-number example

i=i+x*10
l.e.
i=(i+ (x*10))

(leaf i) symtable ptr for i
(node *) 0 (index of node x) 2 (index of node 10)

(node =) 1 (index of node i) 4 (index of node +)

Searching problem:

As we're building the array, we need to search current
array content to find operand indices, e.g. to fill in fields for
X * 10 we need to find indices for nodex x and 10

Currently that means a linear search: O(n)

Could store the nodes as a binary search tree instead of
an array, so O(log(n))

Could store the nodes in hash table: collection of buckets,
with hash function mapping the operands (e.g. *, X, 10) to
a bucket, then just linear search the bucket if not empty

Using duplicate subtrees (DAG)

 When building an entry, and have searched for the correct operand
indices, look at fields for new entry, check if there's already a
matching entry

e e.g. Suppose we have a new entry using x*10 again, we look for a
(node *) with data fields 0 and 2, and find index 3 already provides it

(leaf i) symtable ptr for i
(node *) 0 (index of node x) 2 (index of node 10)

(node =) 1 (index of node i) 4 (index of node +)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

