SSA form and uses

e earlier we introduced single static assignment form
* LHS of each assignment gets a unique name
 simplifies later analysis/optimizations

* relatively easy within a basic block

» problems arise when a name referenced within a block can come
from two or more different predecessor blocks

A 2N

b1 b2 suppose b1 and b2 each define
\& \f - an X, and b3 uses x
b3

how do we relabel x within b3?

Introducing a resolve function

 will introduce a resolve function at the start of basic blocks,
takes the conflicting names as parameters and assigns
“correct” value to newly named variable

« @ N N D

b1: b2: | b1: | b2:
~ X=atb x=c+d x1=a1+b1 x2=c1+d1
b3 b2: h
Z=x+3 x3=resolve(x1,x2)
z=x3+d
Original

Rewritten

When do we need resolve

 a name whose value is set (defined) differently on multiple
Incoming paths does need resolve

e a name coming from a single source doesn't need resolve

« sometimes a named value can flow through multiple paths
unchanged before it reaches b: may not need resolve

 sometimes a named value isn't used after a certain point,
should not need resolve in any further blocks

« we want to be able to identify and place resolve functions
only where they are actually needed

Renaming/resolve example

e . N
aft())-.l-c a0=b+c
a0
\\ y: -C /// y

N

b1:

a=b+d al=b+d
X=X+X x1=x0+x0

) < 4

b2:
z=a+d
- W=X-Z a2=resolve(a0,a1)
. - ~ w1=resolve(w0,w)
20=a0+d - b3 z1=resolve(z0,2)

w0=x0+z0 c=a+z

L asw-y

cl1=a2+z1
a3=w1-y0

b,c,d must be defined prior to b0 or are
used uninitialized in b0, b1, or b2

w* and z* must be defined prior to b0 or
they may be used uninitialized in b3

(note that yO passes through
from b0 to b3 unchanged)

Resolve and reality

» there isn't generally anything like a resolve function in our
target languages, so later we'll have to implement a way to
translate resolves to the target language

o efficient calculation of the minimal set of resolve functions
is a difficult problem, we'll often settle for a reasonable

approximation (i.e. some unnecessary resolves, but
hopefully not many)

Where do definitions reach?

e given statement “x =y OP z", some questions:

- which subsequent blocks change the value of x?
- which subsequent blocks use x before it is changed?
- what is the last block using x on any given path?

« we'll use dominating nodes/sets/trees, and dominance
frontiers in algorithms to try and form answers

* recall: in a CFG, dominating nodes are those that lie on
every path from the graph entry point to n

Relevance of dominating nodes

| tend to use block and node interchangably, each node in
the CFG representing exactly one basic block

« Suppose block b dominates some set of other blocks,
denoted DomBYy(b)

- ifnis in DomBy(b), then b lies on every path to n

- any definition made in b is thus always available in n unless
some block between b and n overwrites it

- b doesn't need to request any resolve functions be added to n
(if some block between b and n changes one of b's definitions
then that block could request a resolve function be added to n)

Dominance frontiers

e given a block b, and set DomBy(b) of nodes it dominates:

- let DF(b) be the dominance frontier of b

- yisin DF(b) if x is in DomBy(b), but y is not, and edge(x,y) is in
the CFG

- this means vy is the first node along a path leaving DomBy(b)
e given a block b and any block y that is in DF(b)

- any definition, d, in b can reach y if not overwritten first

- but since b is not on all the paths to y, an alternative definition
of d might reach y

- thus b should request a resolve function be added to y

Example: Dom(a) and DF(a)

e assuming nodes a-f are part of some larger CFG
« DomBy(a)={b,c,d}
« DF(a)={e, f}

« a's definitions may require resolves in blocks e and f

Finding DF for a node

for block b, the places it may need to request resolve
functions can be identified from DF(b)

to find the nodes in DF(b), explore the tree of nodes in
DomBy(b) and identify nodes on paths leaving the tree

definition: node b is node n's immediate dominator iff

- nis in DomBy(b), and

- there is no node, x, such that n is in DomBy(x) and x is in
DomBy(b)

we'll simplify the CFG to represent just the immediate
dominators, this will be our dominator tree

Immediate dominator: example

 in the graph below, a is the immediate dominator for b,c,d
 dis the immediate dominator for e, f

o (o)
o o
a - d AN
L AP 5

e
&

dominating tree

|

? x 9
A A

D A M

L - A A

s

Example: dominating tree

original CFG

Dominating trees

 for every node in the dom tree

- n's parent is its immediate dominator
- every node dominating n is in the path from the entry point to n

* next steps

- we'll use the dom tree to compute DF(b)
- then we'll use that to place the resolve functions
- then we'll perform any necessary renaming

- then we'll look at replacing the resolve functions with actual
target language code

Computing DF given the tree

for every node, n:
initialize DF(n) to { }
for every node, n:
1f n has multiple predecessors then
for each predecessor, p, of n:
1=p
while 1 i1s not the immediate dominator of p
add n to DF(1)
1 = 1t's 1mmediate dominator

Example (from slide 12)

» Consider node b7 from our earlier example

- it's immediate dominator in the tree was b0

- it's predecessors in the CFG were b2 and b6
for predecessor b2

1 = b2

1 != b0, so add b7 to DF(b2)

set 1 to it's immed dom, which is b0, so stops
for predecessor b6

i = b6

i != b0, so add b7 to DF(b6)

set 1 to its immed dom, which is bl

i != b0, so add b7 to DF(bl)

set 1 to its 1immed dom. which i1s b0O. so stops

Placing resolve functions

« ifnisin DF(b), then any of b's definitions might need a
resolve function in n

« they don't need to be there if the definition is never actually
used in/after n
« compiler can compose:

- a list of which names are used across blocks, i.e. generated in
one and used elsewhere

- a list of which blocks define which names

Names and definitions algorithm

Names = { }
Defs i1s a set of sets: which blocks define which names

for each block, b

varkill = { }

for each operation (in sequence) X =y OP z
1f y isn't in varkill then add y to Names
1f z isn't in varkill then add z to Names
add x to varkill
1f x not previously defined, set Defs(x) = {b}
otherwise add b to Defs(x)

Adding the resolve functions

for each name, v, in Names
processing = Defs(v)
for each block b in processing
for each target block, t, in DF(b)
*if t doesn't have a resolve function for v
add a resolve function for v to t
add t to processing

* we could prune this step further by adding liveout
tests to see if b's v is 1live in d

Renaming in SSA

 typically the renaming is done by keeping the source code
variable name as a base, and adding an integer index

e a counter is kept for each name, and incremented each
time a new name is needed for that base name

« each base name is given a stack

- push new names as they are generated
- pop names on exit from the block that generated them

Translating resolves into code

» the resolve functions are simply an abstraction within SSA

« they need to be replaced with the code that copies the right value to
the right variable prior to block entry

- identify the relevant incoming edge in the CFG

- insert a copy statement from the source block's variable name to
the destination block's variable name

. €.g.suppose b_produced x, b_produced X, and the target block had
X = resolve(xi, xj)

- the edge from b_ would insert code x =x

- the edge from b_would insert code X =X

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

