

SSA form and uses

● earlier we introduced single static assignment form
● LHS of each assignment gets a unique name
● simplifies later analysis/optimizations
● relatively easy within a basic block
● problems arise when a name referenced within a block can come
from two or more different predecessor blocks

b1 b2

b3

suppose b1 and b2 each define
an x, and b3 uses x

how do we relabel x within b3?

Introducing a resolve function

● will introduce a resolve function at the start of basic blocks,
takes the conflicting names as parameters and assigns
“correct” value to newly named variable

b1:
x=a+b

b2:
x=c+d

b3:
z=x+3

Original

b1:
x1=a1+b1

b2:
x2=c1+d1

b2:
x3=resolve(x1,x2)

z=x3+d

Rewritten

When do we need resolve

● a name whose value is set (defined) differently on multiple
incoming paths does need resolve

● a name coming from a single source doesn't need resolve
● sometimes a named value can flow through multiple paths

unchanged before it reaches b: may not need resolve
● sometimes a named value isn't used after a certain point,

should not need resolve in any further blocks
● we want to be able to identify and place resolve functions

only where they are actually needed

Renaming/resolve example

b0:
a=b+c
x=a+c
y=b-c

b1:
a=b+d
x=x+x

b2:
z=a+d
w=x-z

b3:
c=a+z
a=w-y

a0=b+c
x0=a0+c
y0=b-c

a1=b+d
x1=x0+x0

b,c,d must be defined prior to b0 or are
used uninitialized in b0, b1, or b2

w* and z* must be defined prior to b0 or
they may be used uninitialized in b3

z0=a0+d
w0=x0+z0

a2=resolve(a0,a1)
w1=resolve(w0,w)
z1=resolve(z0,z)
c1=a2+z1
a3=w1-y0

(note that y0 passes through
from b0 to b3 unchanged)

Resolve and reality

● there isn't generally anything like a resolve function in our
target languages, so later we'll have to implement a way to
translate resolves to the target language

● efficient calculation of the minimal set of resolve functions
is a difficult problem, we'll often settle for a reasonable
approximation (i.e. some unnecessary resolves, but
hopefully not many)

Where do definitions reach?

● given statement “x = y OP z”, some questions:
– which subsequent blocks change the value of x?
– which subsequent blocks use x before it is changed?
– what is the last block using x on any given path?

● we'll use dominating nodes/sets/trees, and dominance
frontiers in algorithms to try and form answers

● recall: in a CFG, dominating nodes are those that lie on
every path from the graph entry point to n

Relevance of dominating nodes

● I tend to use block and node interchangably, each node in
the CFG representing exactly one basic block

● Suppose block b dominates some set of other blocks,
denoted DomBy(b)
– if n is in DomBy(b), then b lies on every path to n

– any definition made in b is thus always available in n unless
some block between b and n overwrites it

– b doesn't need to request any resolve functions be added to n
(if some block between b and n changes one of b's definitions
then that block could request a resolve function be added to n)

Dominance frontiers

● given a block b, and set DomBy(b) of nodes it dominates:
– let DF(b) be the dominance frontier of b
– y is in DF(b) if x is in DomBy(b), but y is not, and edge(x,y) is in

the CFG

– this means y is the first node along a path leaving DomBy(b)

● given a block b and any block y that is in DF(b)
– any definition, d, in b can reach y if not overwritten first

– but since b is not on all the paths to y, an alternative definition
of d might reach y

– thus b should request a resolve function be added to y

Example: Dom(a) and DF(a)

● assuming nodes a-f are part of some larger CFG

● DomBy(a) = { b, c, d }

● DF(a) = { e, f }

● a's definitions may require resolves in blocks e and f

a
b

c

d

e

f

Finding DF for a node

● for block b, the places it may need to request resolve
functions can be identified from DF(b)

● to find the nodes in DF(b), explore the tree of nodes in
DomBy(b) and identify nodes on paths leaving the tree

● definition: node b is node n's immediate dominator iff
– n is in DomBy(b), and

– there is no node, x, such that n is in DomBy(x) and x is in
DomBy(b)

● we'll simplify the CFG to represent just the immediate
dominators, this will be our dominator tree

Immediate dominator: example

● in the graph below, a is the immediate dominator for b,c,d
● d is the immediate dominator for e, f

a

b

c

d

e

f

Example: dominating tree

b0 b1 b3 b5

b4 b6

b7b2

original CFG

b0

b7

b2

b1

b6

b4

b3 b5

dominating tree

Dominating trees

● for every node in the dom tree
– n's parent is its immediate dominator
– every node dominating n is in the path from the entry point to n

● next steps
– we'll use the dom tree to compute DF(b)

– then we'll use that to place the resolve functions
– then we'll perform any necessary renaming

– then we'll look at replacing the resolve functions with actual
target language code

Computing DF given the tree

for every node, n:

 initialize DF(n) to { }

for every node, n:

 if n has multiple predecessors then

 for each predecessor, p, of n:

 i = p

 while i is not the immediate dominator of p

 add n to DF(i)

 i = it's immediate dominator

Example (from slide 12)
● Consider node b7 from our earlier example

– it's immediate dominator in the tree was b0

– it's predecessors in the CFG were b2 and b6

for predecessor b2

 i = b2

 i != b0, so add b7 to DF(b2)

 set i to it's immed dom, which is b0, so stops

for predecessor b6

 i = b6

 i != b0, so add b7 to DF(b6)

 set i to its immed dom, which is b1

 i != b0, so add b7 to DF(b1)

 set i to its immed dom, which is b0, so stops

Placing resolve functions

● if n is in DF(b), then any of b's definitions might need a
resolve function in n

● they don't need to be there if the definition is never actually
used in/after n

● compiler can compose:
– a list of which names are used across blocks, i.e. generated in

one and used elsewhere
– a list of which blocks define which names

Names and definitions algorithm

Names = { }
Defs is a set of sets: which blocks define which names

for each block, b

 varkill = { }

 for each operation (in sequence) x = y OP z

 if y isn't in varkill then add y to Names

 if z isn't in varkill then add z to Names

 add x to varkill

 if x not previously defined, set Defs(x) = {b}

 otherwise add b to Defs(x)

Adding the resolve functions

for each name, v, in Names

 processing = Defs(v)

 for each block b in processing

 for each target block, t, in DF(b)

 *if t doesn't have a resolve function for v

 add a resolve function for v to t

 add t to processing

* we could prune this step further by adding liveout

 tests to see if b's v is live in d

Renaming in SSA

● typically the renaming is done by keeping the source code
variable name as a base, and adding an integer index

● a counter is kept for each name, and incremented each
time a new name is needed for that base name

● each base name is given a stack
– push new names as they are generated

– pop names on exit from the block that generated them

Translating resolves into code

● the resolve functions are simply an abstraction within SSA

● they need to be replaced with the code that copies the right value to
the right variable prior to block entry

– identify the relevant incoming edge in the CFG

– insert a copy statement from the source block's variable name to
the destination block's variable name

● e.g. suppose b
m
 produced x

i
, b

n
 produced x

j
, and the target block had

x
k
 = resolve(x

i
, x

j
)

– the edge from b
m
 would insert code x

k
=x

i

– the edge from b
n
would insert code x

k
=x

j

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20

