

Hand crafted context sensitive checks

● Many issues that CFG/parsing cannot resolve:
● Variables, functions, constants declarations vs use
● Identifying/resolving scoping issues
● Type checking, implicit type conversions
● Checking number/types of parameters in function calls

Declarations vs use

● If we parse statements in sequence, and require items to
be declared before use then we can add to symbol table
on declaration and validate on use

● If we allow implicit declarations then can do both the insert
and the validation on first use

● For mutually recursive functions it's not possible to declare
both before use – allow forward declarations (tell compiler
to allow it for now, promises full compatible definition
coming later)

Declare anywhere

● What if we can use something before we declare it?
● Compiler could make two passes: first pass fill in symbol

table, second pass does error checking
● Could use implicit forward declarations: assume it's ok

when sees the use, makes a list of all the uses that need
to be checked, then when sees definition it fills in symbol
table and goes back to the list of things to check

Scoping issues

● Suppose we have nested (lexical) scopes
● Give each scope a unique identifier
● When item is declared, record its scope in symbol table
● During compilation, keep a stack of current scopes (bottom

of stack is global, each time you enter a scope push its id,
when you leave the scope pop its id)

● When resolving use of an item, search the stack from top
down, looking for “closest” definition

Dynamic scoping

● Dynamic scope: called function can “see” all the items
defined in the caller

● Could maintain one stack for each defined item name (e.g.
a stack for X's, a stack for Y's, etc.

● Push a new item on top of stack when it is defined, pop it
when that item's lexical scope ends

● When code references a name, use the definition on top of
stack

● Requires a collection of stacks: one per used identifier

Type checking

● Assuming we have dealt with the declare-before-use vs
declare-anywhere issues

● Where a value is used, its actual type must be checked
against the expected type

● Where an expression involves an operator and multiple
arguments they must all be compared with one another for
compatibility

● If types are not identical, must decide if inserting implicit
type conversion is appropriate (e.g. integer-->real)

Resolving function calls

● Must address declare-before-use vs declare-anywhere
issues (as with variables)

● Must address scoping if nested declarations allowed
● Must check number of parameters passed against number

expected (arity), and must check types passed / expected
● For functions with optional parameters, must insert the

defaults in call implementation where needed

Handling variadic functions

● Need to decide how to implement functions that accept
variable numbers of parameters

● One possibility: in stack frame, push parameters right-to-
left (so “first” parameter is on top), then push a count of the
number of parameters passed

Code generation...

● Will address many other implementation issues w.r.t. the
target language when we get to code generation

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

