

Code gen: selection and iteration

● Recap: our code can be broken into blocks
● Each block has a unique entry point at the top of the block (no
mid-block labels)
● Each block has a unique exit point at the end of the block (no
mid-block branches)
● Assuming we number or label each block, we could identify each
block by its entry/exit point
● Control-flow graphs can model the possible block sequences
using nodes for blocks and directed edges for control transfers

Instructions within a block

● instructions within a block can often be reordered safely
● directed graphs can represent the partial ordering

1) x=1

2) y=2

3) z=x+1

4) y=y+z

5) x=x+1

1

3

5

2

4

(We'll consider the instruction scheduling problem in the optimization section)

Possible orders
12345
12354
13245
13254
13524
21345
21354

Selection: if/else

● largely covered in our earlier boolean ops section
● if (cond) BLOCKA else BLOCKB
● implementation might prioritize one block over the other

– is one block much more likely to run than the other?

– is one block longer or slower than the other?
– does one block contain more nested-ifs than the other?

Selection: switch/case

● Could implement simply as if a cascading if/else sequence
● switch (x)

– case A: blockA

– case B: blockB

– case C: blockC

– ...
– default: blockX

if X==A then blockA
else
 if X==B then blockB
 else
 if X==C then blockC
 else
 ...
 else blockX

Optimize for large sets of cases

● given large set of values, rewrite as a table of values and
block labels

● Insert code to perform binary search on the values, then
jump to the correct label

● O(logN) execution time instead of O(N) , at the expense of
generating more complex code

Optimize for sequential integers

● case values are often an ascending range of integer
values or character codes (e.g. cases 3,4,5,6,...,17 or
'a','b',...'k')

● implement like an array of labels to the code blocks
● use the case value to compute the correct array position

offset = (x - base index)*storagesize
● look at value of x, compute offset, jump to right spot in

“array” and get label of the desired block

Iteration: loops

● details depend heavily on available test/branch operations
● initially we might generate non-optimal assembly

constructs for a loop, with the goal of making later
optimizations more easily applicable

● tends to show up as having a test at loop entry then
another very similar test for loop continuation, will re-visit
when we get to optimizations

for x=m to n by i do blockA

 load m,Rx

 load n,Rn

 load i,Ri

 compareGT Rx,Rn,Rc1 // in case m > n

 branch Rc1,Exit,Entry

Entry: blockA code

 add Ri,Rx,Rx

 compareGT Rx,Rn,Rc2

 branch Rc2,Exit,Entry

Exit:

while (m < n) do blockA

 load m,Rm

 load n,Rn

 compareGE rm,rn,Rc1

 branch Rc1,Exit,Entry

Entry: blockA code

 compareGE rm,rn,Rc2

 branch Rc2,Exit,Entry

Exit:

repeat blockA until (m < n)

 load m,Rm

 load n,Rn

Entry: blockA code

 compareGE Rm,Rn,Rc

 branch Rc,Exit,Entry

Exit:

Break, continue, goto

● Each can be a single unconditional jump
– break jumps to Exit
– goto jumps to specified location
– continue jumps to Entry

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

