Code generation: continued

* previously we looked at code generation using a simple tree-
walking routine, with an emphasis on binary operations

* still need to address:

» handling of function calls,

* handling of mixed data types in operations,

* special issues with the assignment operation(s),

* how to handle conditional expressions and branching (with huge
impact on loops, if/else, etc)



Function calls

e discussed earlier the need to emit code in the caller/callee
segments to handle the transfer of control between them,
setting up and cleaning up activation record, etc

« at assembly language level, this should fit seamlessly in
the operation sequence(with return value winding up in a
register somewhere)

« Possibility of side effects limits ability to perform
optimizations based on order of ops: (a + b —f(a) + a + b),
suppose f has side effect on a then we can't reuse the
(a+b) ... f could even have side effect on b if its global



Mixed-type operations

e given (a + b), if types of a and b are not identical then need
to pick which kind of “+” we're performing, and insert code
to implicitly convert one of the operand values

 tree walk or output routines might then be performing type
checking, and emitting extra code for implicit conversion



Assignment operations

Generally accepted idea for x = expr is to evaluate RHS
and store value in variable on LHS

this allows right-to-left chaining, e.g. x=y =2z
means assign has very low precedence, so performed last

again need to typecheck RHS vs LHS and insert
appropriate conversion code if needed

More complex assignments, e.g. X +=y, may involve
multiple operations at assembly language level



Boolean operations

e not universal, but a common precedence scheme is
- OR (lowest)
- AND
- <<==l=>>=
_ 4.
— */
- negation
- (expr)
 allows expressions likeif(a<bAND b <c)



Short circuiting

 Need to be aware when source and target languages have
different expectations w.r.t. short circuiting expressions

 Short circuit based on idea that

- “true OR X" is true,
- “false AND x” is false:

e don't need to evaluate x in either case
* (note some similar ideas hold in other areas, e.g. 0*x is 0)



Relationship to hardware

* Translation of HLL statements to assembly-level
statements often heavily affected by nature of test-and-
branch operations at the hardware level

e Four common schemes we'll look at:

- condition codes (cc)

- condition codes + conditional move
- boolean compare
- predicated execution



Condition codes approach

« Compare operation compares two ops, say R1 R2, sets
variety of flags in a condition register to show if R1<R2,
R1<=R2, R1=R2,R1!=R2, etc

« Suite of branching operations take a condition register and
two labels, jump to one label if condition is true, else other

e e.g.ifr1 <r2jump to label1, else jump to label2:

- compare r1,r2,cc1
- branchLT cc1, label1, label2



CC + conditional move

« Adds one more set of operations, each takes a condition
register, two data registers, and a destination register

e if condition is true then stores first data value in
destination, otherwise stores second

e e.g.ifr1 <r2thenr5=r1, elser5=r2

- compare r1,r2,cc1
- movelLT cc1,r1, r2, r5



Boolean compare

» drops condition code registers entirely, uses a suite of
compare operations that each check a specific relationship
and set a true/false value in destination register

e branch instruction takes register and two labels, jumps to
one label if register contains true, otherwise to other label

e e.g.1fr1 <r2thenr3 = true, else r3 = false

- compareLT r1,r2, r3
- branch r3, label1, label2



Predicated execution

e requires support at hardware level

 allows instructions that take a register as first argument
and another instruction as the second

o if first argument is true then executes second argument

 eg.lfrlistruethenrd =r2 +r3
- (r1)? add r2,r3,r4



EX:if(a<=b)thenx=y+zelsex=i-]

// cc version // boolean compare
compare ra, rb, ccl compareLE ra, rb, rl
branchLE ccl,Ll,L2 branch rl,L1,L2

L1:add ry,rz,rx L1:add ry,rz,rx
jump L3 jump L3

L2:sub ri,rj,rx L2:sub ri,rj,rx

L3: L3:

// with conditional move, // predicated execution

// here computes both answers // adds true/false test for

/ and picks one // each operation
compare ra, rb, ccl compareLE ra, rb, rl
add ry,rz, r1 not rl, r2
sub ri,rj,r2 (rl)? add ry,rz,rx
moveLE rl,r2,rx (r2)? sub ri,rj,rx




	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

