

Code generation: continued

● previously we looked at code generation using a simple tree-
walking routine, with an emphasis on binary operations
● still need to address:
● handling of function calls,
● handling of mixed data types in operations,
● special issues with the assignment operation(s),
● how to handle conditional expressions and branching (with huge
impact on loops, if/else, etc)

Function calls

● discussed earlier the need to emit code in the caller/callee
segments to handle the transfer of control between them,
setting up and cleaning up activation record, etc

● at assembly language level, this should fit seamlessly in
the operation sequence(with return value winding up in a
register somewhere)

● Possibility of side effects limits ability to perform
optimizations based on order of ops: (a + b – f(a) + a + b),
suppose f has side effect on a then we can't reuse the
(a+b) ... f could even have side effect on b if its global

Mixed-type operations

● given (a + b), if types of a and b are not identical then need
to pick which kind of “+” we're performing, and insert code
to implicitly convert one of the operand values

● tree walk or output routines might then be performing type
checking, and emitting extra code for implicit conversion

Assignment operations

● Generally accepted idea for x = expr is to evaluate RHS
and store value in variable on LHS

● this allows right-to-left chaining, e.g. x = y = z
● means assign has very low precedence, so performed last
● again need to typecheck RHS vs LHS and insert

appropriate conversion code if needed
● More complex assignments, e.g. x += y, may involve

multiple operations at assembly language level

Boolean operations

● not universal, but a common precedence scheme is
– OR (lowest)
– AND
– < <= = != > >=

– + -

– * /
– negation

– (expr)

● allows expressions like if (a < b AND b < c)

Short circuiting

● Need to be aware when source and target languages have
different expectations w.r.t. short circuiting expressions

● Short circuit based on idea that
– “true OR x” is true,
– “false AND x” is false:

● don't need to evaluate x in either case
● (note some similar ideas hold in other areas, e.g. 0*x is 0)

Relationship to hardware

● Translation of HLL statements to assembly-level
statements often heavily affected by nature of test-and-
branch operations at the hardware level

● Four common schemes we'll look at:
– condition codes (cc)

– condition codes + conditional move

– boolean compare
– predicated execution

Condition codes approach

● Compare operation compares two ops, say R1 R2, sets
variety of flags in a condition register to show if R1<R2,
R1<=R2, R1=R2,R1!=R2, etc

● Suite of branching operations take a condition register and
two labels, jump to one label if condition is true, else other

● e.g. if r1 < r2 jump to label1, else jump to label2:
– compare r1,r2,cc1

– branchLT cc1, label1, label2

CC + conditional move

● Adds one more set of operations, each takes a condition
register, two data registers, and a destination register

● if condition is true then stores first data value in
destination, otherwise stores second

● e.g. if r1 < r2 then r5 = r1, else r5 = r2
– compare r1,r2,cc1

– moveLT cc1, r1, r2, r5

Boolean compare

● drops condition code registers entirely, uses a suite of
compare operations that each check a specific relationship
and set a true/false value in destination register

● branch instruction takes register and two labels, jumps to
one label if register contains true, otherwise to other label

● e.g. If r1 < r2 then r3 = true, else r3 = false
– compareLT r1, r2, r3

– branch r3, label1, label2

Predicated execution

● requires support at hardware level
● allows instructions that take a register as first argument

and another instruction as the second
● if first argument is true then executes second argument
● e.g. If r1 is true then r4 = r2 + r3

– (r1)? add r2,r3,r4

Ex: if (a <= b) then x = y + z else x = i - j

// cc version
 compare ra, rb, cc1
 branchLE cc1,L1,L2
L1:add ry,rz,rx
 jump L3
L2:sub ri,rj,rx
L3:

// with conditional move,
// here computes both answers
// and picks one
 compare ra, rb, cc1
 add ry,rz,r1
 sub ri,rj,r2
 moveLE r1,r2,rx

// boolean compare
 compareLE ra, rb, r1
 branch r1,L1,L2
L1:add ry,rz,rx
 jump L3
L2:sub ri,rj,rx
L3:

// predicated execution
// adds true/false test for
// each operation
 compareLE ra, rb, r1
 not r1, r2
 (r1)? add ry,rz,rx
 (r2)? sub ri,rj,rx

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

