

Code gen: functions

● Earlier discussed division of responsibilities between caller/callee

● Preserving/restoring registers
● Setting up/retrieving return values
● Setting up/cleaning up parameters
● Setting up/cleaning up local variables
● Transfer of control (where to jump to on call/return)

Optimizations

● compiler might inline functions that are only called once
● moving code to callee means it only appears in one spot in

source code, instead of at each call/return point
● register preserve/restores may involve a lot of code, frequently

repeated (if lots of registers used)

– special hw instructions might save/restore many registers at once

– caller might pass callee a list of which registers to save/restore,
moving code into callee

– compiler might generate special routine to save/restore
(bypassing regular call/return rules since used by compiler only)

Parameter handling

● Pass-by-ref: ensure value is in memory at given address
● Pass-by-value: evaluate first, store in reg
● Source language may/may not specify order of evaluation

of value parameters
● If unspecified, compiler should pick a consistent order, e.g.

right-to-left, left-to-right
● also need to consider when side effects are applied in call

C example: what is the output?

f(int &a, int b, int c, int d, int e, int f, int g) {

 printf(“%d %d %d %d %d %d %d\n”, a,b,c,d,e,f,g);

 return a=a+a;

}

// then someplace in main

a=1;

a= f(a, a+=100, ++a, a-=20, a, a--, a);

printf(“%d\n”, a);

C example: continued

f(int &a, int b, int c, int d, int e, int f, int g) {

 printf(“%d %d %d %d %d %d %d\n”, a,b,c,d,e,f,g);

 return a=a++;

}

a=1;

a= f(a, a+=100, ++a, a-=20, a, a--, a);

printf(“%d\n”, a);

// f's output: 81 81 -19 20 0 1 1

// main's output: 81

// evaluating params right-to-left

// postincrement in return statement is “lost”

Implicit parameters

● compiler may add extra parameters, e.g.
– pointer to callee's activation record
– pointer to caller's activation record
– return address

– extra addressability values (e.g. Pointer to activation record for
lexical parent in nested function declarations)

– receiver parameter for OO (e.g. “this” pointer in C++)

– function descriptors for functions as parameters

● depends on OS/hw stack/control mechanisms

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

