

Code generation: tree walking

● want to start looking at ways to generate code corresponding to
statements expressed in an abstract syntax tree (AST)
● will start with handling simple expressions and primitive
operators, then expand to consider function calls, more complex
types and operations
● will use the idea of a tree-walking function: something that
traverses the AST, outputting code in the target language
● will use a set of fictional assembly language instructions for our
target language

Example: x + y * z

● AST would have + as the root, x as left subtree, * as root of
right subtree, leaves of * would be y and z

● post-order traversal of tree gives bottom-up evaluation, would
process nodes in sequence x y z * +

● Suppose initially register Ra has address of activation record
(AR) none of the variables are in registers yet, register locations
are stored as offsets from start of AR

● Need to load each item's offset into a register, then use that to
load item value, then perform computations

● (and using virtual registers to hold intermediate values)

Ex: x + y * z continued

● (making up different forms of load instructions here)
sequence x y z * +, generated code might look like

loada x,r1 // loads offset of x into r1

load ra,r1,r2 // from addr AR+offset, load x content into r2

loada y,r3

load ra,r3,r4 // so now y in r4

loada z,r5

load ra,r5,r6 // so now z in r6

mult r4,r6,r7 // r7 = y * z

add r2,r7,r8 // r8 = x + (y * z)

Tree-walking routine

● need a tree-walking routine to perform the AST traversal
and output the desired code

● values are getting stored in registers, so routine needs
local variables to store the register names to use, and a
routine to look up the next available register name

● for now, assume AST nodes are just binary operators,
numeric literals, or variable names

● For now, assume we have an output function that
generates correct code for an individual operator/arg list

walk(node n)

locals: res, tmp1, tmp2

if operator(n)

 tmp1 = walk(left(n))

 tmp2 = walk(right(n))

 res = getNextReg()

 output(op(n), tmp1, tmp2, res)

else if number(n)

 res = getNextReg()

 output(loadI, value(n), nil, res)

else if identifier(n)

 tmp1 = baseaddress(n)

 tmp2 = offset(n)

 res = getNextReg()

 output(load, tmp1, tmp2, res)

● output(op, arg1, arg2, destreg)
– use a switch that looks at operand type (e.g. add, mult, load,

loada, etc) and generates the right line(s) of assembler,
embedding the provided arguments and destination register

● walk would need to be expanded, cases for ternary ops,
unary ops (left and right associative), etc

Loading from registers

● if x,y,z were already in registers then the pairs of load
instructions would be irrelevant (and possibly incorrect,
e.g. if x was in a register and that register value had
changed since x was loaded)

● tree walk might add a call to a lookup function to see if a
specific storage location was already loaded

● access to some locations might require other instructions
(e.g. access to global variables might first require loading
base address of global space)

Access type

● pass-by-value params:
– as per variables

● pass-by-reference params:
– if already in register use that

– otherwise
● load its offset into one register
● use that plus the AR register to load the parameter value (e.g. the

pointer to the actual variable to work on)
● use THAT address to load the actual desired content

Register counts

● after we traverse one subtree, we need to use a register to
store its result while traversing the other subtree

● to reduce total count of registers used, it's best to first
traverse the subtree that requires fewer registers

● e.g. Suppose left tree requires 5, right tree requires 3
– if we do left tree first, we use 5 during its traversal and 4 during

right's traversal
– if we do right tree first, we use 3 during its traversal and 6

during left's traversal

Optimizations

● we'd like our compiler to be smarter than just to follow the
raw precedence rules verbatim

● e.g. a + b – c + a + b
● ideally, recognize the (a + b) replication, at least reuse that

intermediate result, and possibly even optimize further with
a bit shift, e.g. implement as ((a+b) <<2) - c)

● order of ops and limits of floating point precision can also
have an impact, e.g. x1 + x2 + ... xn, adding from smallest
to largest can give different results than largest to smallest

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

