

Direct-coded scanners

● Meant to reduce cost associated with large lookup tables (which
can cause issues with cache/paging performance)
● Increases code size to eliminate tables, and generates code that
is language-specific
● Instead of a generic while loop to “read forward”, each state has
its own code segment to read/process characters and decide what
next state should be, then performs direct branch to that state's
code segment

Our [A-Z][a-z]+ example

● Initialize token to “”, stack to <BOTTOM>, and S to s0 (just
like with the table-driven), each state gets labelled code:

● s0:
– read next char, append to token
– push s0
– if char is upperalpha goto s1

– else goto Final

Example continued

● s1:
– read next char, append to token
– push s1
– if char is loweralpha goto S2

– else goto Final

Example continued

● s2:
– read next char, append to token
– clear stack (since s2 is an accept state)
– push s2

– if char is loweralpha goto s2

– else goto final

Example continued

● Final:
● while S is not <BOTTOM> or s2 (the accept state)

– pop top state into S

– chop last char off token

– roll back input stream one char

● return token type based on S

Note basic structure of segments

● state label:
– read next char and append to token
– if it's an accept state then clear stack
– push state

– for each available transition function add
● If char is RIGHTTYPE goto NEXTSTATE

– add default else case to to to Final

Basic structure of Final

● while S not an accept state and not <BOTTOM>
– pop top state into S
– chop last char off token
– roll back input stream one char

● if S is an accept state then return matching token type
● else reject

Notes

● Sometimes character classification can be complex, and
can actually be more expensive than table lookup

● Need to consider tradeoff: size/speed of table lookup vs
size/speed of code, heavily dependent on the actual
language being scanned

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

