

Intermediate representations

● Most compiler 'work' takes place after internal representation is
built (analysis, transformations, optimizations, translations)
● Might be a sequence of different internal representations
produced, manipulated, refined over time
● Want representations that are efficient to produce, traverse,
search, manipulate
● May also want representations that effectively model either the
source or target language
● Syntax trees and linear codes are two common representations

Trees, graphs, codes

X = Z+Y*Y–Z

Linear code
R0 = X
R1 = Y
R2 = Z
R3 = R1 * R1
R4 = R2 + R3
R5 = R4 - R2
X = R5

+ z

*

=

x

4

-

yy

z z

y

*

+

-

=

x
Syntax tree

Syntax graph

Trees/graphs vs linear codes

● Syntax trees are intuitive/natural representation from perspective
of source language
● Wide variety of other graph-based representations of parts of
programs (control flow, dependency graphs, call graphs, etc)
● Linear codes are good representation to reflect eventual
translation to some form of assembly language

● Various common forms of linear code (1-address, 3-address)

Combinations, implementations

● Often effective to use combinations of representations,
e.g. linear codes plus control flow graphs

● Once a representation form is chosen, still many decisions
on how to implement efficiently (which data structures
optimize speed, size, usability)

● Also many decisions on the nature of the model of the
program in question (choice of memory models, naming
and re-naming choices and implications, opportunities for
rearranging code segments in the model)

	Slide 1
	Slide 2
	Slide 3
	Slide 4

