

General intro

● Compiler is just another software program
● Primary goal: read a program written in one language (source
language) and translate to equivalent program in another
language (target language)
● Secondary goal: report any errors detected in the source
● Needs to “understand” both the source and target language
● If target language is machine code (i.e. to produce an
executable) then detailed hardware architecture knowledge
required

Common variations

● Compile to an executable: read entire source code
program and generate machine code equivalent for target
platform

● Compile to an intermediate form (e.g. Java byte code):
read entire source code program and generate
intermediate representation, which can later be run by a
compatible virtual machine

● Act as an interpreter: read source code statements and
translate them one by one

Compile to executable

● Translate to machine code executable for target platform

compiler

executable

Source code

User input output

Compile to intermediate form

● Translate to intermediate representation (e.g. Byte code)
to be run by a virtual machine later

compiler

VM

Source code

User input

output
Intermediate form

Act as interpreter

● Read and execute instruction by instruction

interpreterSource code
instruction

User input

output

Supporting programs

● Often incorporated into a software package along with the
compiler, appears as a single unit to the user, example:

● Preprocessor: reads source code, applies macros to transform
(e.g. C #defines, C++ templates, lisp macros)

● Compiler: translate to target assembly language (e.g. .cpp files
to .s files)

● Assembler: translate assembly to relocatable machine code
(e.g. .s files to .o files)

● Linker/loader: take set of machine code files, join together to
create final executable, put in memory and finalize addresses

Common sequence of steps

● Read character sequence from source code (and preprocess?)
● Lexical analysis: produce token stream
● Syntactic analysis: produce syntax tree
● Semantic analysis: refine/augment syntax tree
● Intermediate generator: produce language independent form
● Machine-independent optimization: refine independent form
● Code generation: actual target code produced
● Machine-dependent optimization: optimize target code

Notes about the steps

● Each step is a complex process on its own with many
options/variations (e.g. code optimizations encompasses a
huge range of possibilities)

● Often we must maintain/share data across the steps (e.g.
through the symbol table, to be discussed soon)

● The division between steps is often blurry, handled
differently by one compiler than another

● Describing the processes involved can be complex, will
often develop notations/abstract syntax as an aid in this

Compiler support tools

● Many tools exist to automate the construction of compilers
for a language, usually based on the existence of a formal
grammar for the language

● Scanner generators: read a grammar and produce a
lexical analyzer (tokenizer)

● Parser generators: read a grammar and produce a syntax
analyzer (parser)

● Code generation tools: read a rule collection and produce
a generator that produces target code from an
intermediate representation

Compiler creation tools

● Many tools exist to automate the construction of compilers
for a language, usually based on the existence of a formal
grammar for the language

● Scanner generators: read a grammar and produce a
lexical analyzer (tokenizer)

● Parser generators: read a grammar and produce a syntax
analyzer (parser)

● Code generation tools: read a rule collection and produce
a generator to produce target code from an intermediate
representation of a program

Compilers, languages, architecture

● Evolution of programming languages and computer
architectures drive the evolution of compiler techniques
(parallel processors, pipelining, memory heirarchies, etc)

● how we implement a language feature on a target
machine has a huge impact on the feature's usefulness
(e.g. early years of C++ were plagued by problems in
developing compilers that could effectively meet the
language specifications)

● requires strong skills/knowledge in software engineering,
data structures, algorithms and complexity, hardware and
architecture, language theory, dynamic programming,...

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11

