

Language features (330 recap)

● Languge concerns when designing a compiler or other language
tool, for both source and target language
● Language paradigm: procedural, OO, functional, logic, hybrids
● Language purpose and associated priorities
● Data types/operators (primitive/compound, built in/user-defined)
● Exception handling
● Scoping rules/resolution
● Selection/Iteration constructs
● Subroutines
● Type handling/checking

Alphabet and naming rules

● Supported alphabet for language
● Expression of tokens (regex), solution of overlap
● Practical limitations on token length (literals, identifiers,...)
● Rules surrounding reserved words, keywords, user defined

rules, etc

Primitive types and operations

● Types supported (integers, reals, booleans, characters,
ordinals, etc)

● Value ranges, limits, defaults
● Supported operations, associativity, precedence
● Practical implementation concerns (storage, access,

overflow/underflow)

Compound types and operators

● Arrays (single/multidim), vectors, strings, sets, lists,
structures, hash tables, unions

● Built in operations and functions
● Shallow/deep copies and comparisons
● Implementation concerns and implications (storage

allocation, initialization, defaults, reallocation/deallocation,
parameter passing, returns)

Types, checking, conversion

● Static/dynamic typing
● Support/enforcement of run time type checking
● Implicit/explicit type conversion
● User defined types, checking
● Structural vs name type compatibility
● Narrowing/widening conversions

Variables and constants

● Typing rules
● Scoping, resolution rules
● Lifetime
● Memory allocation, deallocation, reallocation
● Initialization, defaults

Block and scoping

● Entry, exit points
● Nested blocks, scopes
● Jumps across boundaries
● Scope support/enforcement
● Storage allocation

Selection

● Single-way, two-way, multi-way
● Test and branch constructs (high and low level)
● Impact on efficiency (size and speed)

Branching and labels

● Branch mechanisms: targets by label, by distance
● Conditional and unconditional branches
● Relationship to scoping, blocks, control structures
● Within/across subroutine boundaries

Iteration

● Loop forms (for, while, repeat, etc)
● Iteration across collections (foreach)
● Entry/exit points (break, continue, final)
● Interaction with scoping (e.g. for control variables)

Subroutines

● Global vs nested
● Definitions and calls
● Parameter passing mechanisms (optional, variadic,

keyword, value/reference)
● Relationship to scoping (lexical vs dynamic)
● Implementation of dynamic scoping and/or nested

subroutine definitions

Dynamic memory handling

● Allocation/deallocation
● User controlled vs automatic
● Garbage collection approach
● Smart vs “dumb” pointers

ADTs/OO

● Encapsulation of fields and methods
● Abstraction, hiding, access control
● Inheritance (single/multiple, field/method overrides)
● Static vs dynamic binding
● Type checking and conversion
● Allocation/deallocation
● Generic/abstract classes

Exception handling

● Built in vs user-defined exceptions
● Exception heirarchies
● Control structures (try, throw, catch)
● Relationship to scope

And more...

● Many more features and implementation issues that are
language specific (for source, or target, or platform)

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15

