Parsing considerations

» Other grammar types (SLR, LALR)
* Which parsing approach should we choose, when?
* What about error handling/recovery by the parser?

* What happens if context-sensitive information is needed to
eliminate syntax ambiguities?

« Comparisons of left and right recursion in grammars
* What optimizations can be performed?




SLR and LALR grammars

* These produce smaller tables than LR(1), and can be
generated for same sets of languages

 SLR make use of restricted grammars that eliminate LR(1)
need for lookahead, with resulting reduction in table size

« LALR(1) categorizes some items in a state's set are
critical, while others can be derived from the critical ones,
so table construction only represents the critical ones



Picking an approach

* Handcrafted vs table driven?
- Better error handling/optimization vs reliability/easy generation
e Top-down vs bottomup? LL(1), LR(1), LR(k), SLR, LALR?

- Top-down, recursive descent a better fit for hand coding
- Grammar choice might be dictated by available skill/toolsets



Error checking and recovery

* Providing good error messages is key role of most
compilers

 |deally, even if an error is found in one statement, the
compiler can generate an error message and still proceed
to later statements

« FOLLOW is useful here, to identify potential points to
resume processing if an error is found in current statement

 Hand-coded recursive descent parsers provide the
compiler writer with good opportunities to customize error
messages and handling to the current context



Context sensitive ambiguities

 Sometimes a keyword can have two or more different
meanings in different contexts:

- E.g. Suppose in our language the syntax s(i,j) can mean either
a function call or an index into a two-dimensional array

* The parser needs context-sensitive information to identify
which use is applicable

 Alternatively, the parser can identify the dual form, and
wait until context-sensitive analysis to identify which
specifically applies



Left vs right recursion

Top-down parsers rely on right-recursive grammars

Bottom-up parsers can work with either left or right

Compiler writer must consider implications when writing
the grammar to be used by the compiler

Left recursion naturally supports left associativity, right
recursion naturally supports right associativity

Rule of thumb: left recursion can give smaller stack depth



Grammar optimization

Language and implementation-dependent issues to
consider

Can we optimize by reducing the grammar itself?

Can we optimize by collapsing equivalent rows or
equivalent columns in the table?

Is it more effective to retain the (optimized) tables, or to
use them as the basis for a direct-coded approach?



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7

