

OO scope resolution

● object oriented languages typically support standard lexical
scoping rules, but also incorporate scoping based on the class
heirarchy
● within a method, a reference to a variable could refer to one that
exists in one of the current lexical scopes, a field that is defined in
the current class, or a field that is defined in one of the ancestor
classes
● the scope resolution mechanism must identify and access the
correct item

Object records

● just as activation records encapsulated the information
associated with a function call, object records will
encapsulate the information associated with an individual
object

● OR must include a means to access the fields associated
with that object (including those inherited from ancestor
classes)

● OR must also include a means to access the methods
associated with that class (again, including inherited, and
typically distinguishing between overridden and inherited)

Multiple inheritance

● if a language allows inheritance from multiple different
parent classes, then name clashes are possible (e.g. both
parents define a method named print)

● need to support the language clash-resolution rules
● might be a default ordering (e.g. In event of clash resolve

in the order inherited, e.g. “public A, B, C” pick A first)
● might mandate programmer explicitly resolve clashes (e.g.

A::print(), B::print(), etc)

And yet more tables...

● linked list of symbol tables (from current to global scope)
● linked list of activation records (current functions)
● table of object records for all in-scope objects
● linked list of tables for class heirarchy, each table with

pointers to the methods defined/overridden in the class,
plus a pointer to the parent class table

● might actually be a tree or DAG if multiple inheritance
permitted (need pointers to tables of each parent)

Method access

● compiler needs to insert code to ensure correct method is
invoked at each call

● might use an <ancestor,offset> format: follow the chain of
table pointers to the correct ancestor, then use offset to
access correct method in that ancestor's table

● closed class structure: correct method can be identified at
compile time

● open class structure: run-time identification of method
needed (e.g. dynamic dispatch)

Possible approach

● one table for each class
– pointer to each method defined/overridden by this class
– pointer to each parent class table

● one table for each object
– direct pointer to each of the methods it uses by default

– entries for each field (including inherited)
– pointer to the table for its class

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

