Local optimizations

 performed strictly within a basic sequential block

e simpler analysis: every statement in the block runs in one
specific order every time the block is invoked

 can't use wider context (e.g. which variables within block are
also used before/after the block)

e can resolve constant expressions

e can re-use previously computed values

 can simplify expressions through by applying identities
e can rewrite expressions for greater parallelization

Local value renumbering (LVN)

assign unique integer id to each value computed in block
will use to refer to previously computed values

expressions can be given the same id # if they have
provably equal values for all operands of the expressions

go through list of statements of form T =L Op R, and if
expression previously computed then replace RHS with
the LVN from the previous instance

Numbering algorithm

e Given block with n operations T, = L, OP, R,

 Maintain table of known LVVNs so far
for i = 0..n-1:
lookup LVN for L., R

new LVNs assigned on first use of vars, literals
if expr “L. OPi Ri” already in table

replace T. = expr with T. = expr's LVN from table

else Get new LVN, v, and insert expr,v in table
record T}'s LVN 1n table

Example

first statement

- first time for x, y, new expr x-y, assign LVNs

second statement

looks up w, new z, new expr

third statement

new expr (different x LVN)

fourth statement

expr is same as second statement, re-use LVN

Original code
W=X-Yy
X=WH+2Z
y=x-Yy
Z=W+2Z

Showing LVNs
w(2) = x(0) - y(1)
x(4) = w(2) + z(3)
y(9) = x(4) - y(1)
z(4) =w(2) + z(3)

Table lookups, commutative ops

» use hash table, key being combination L(LvN), OP, R(LVN)

« hash function can be tweaked to recognize expressions on
commutative ops as the same, e.g. L,+,R hashes the
same as R,+,L

« thus LVNs automatically recognizing that x=y+z can be
treated the same as x=z+y

Constant folding

during LVN numbering, can also evaluate constant
expressions

- XxX=3+5
gets re-written as

- X=8
LVN for x gets an annotation that it is a constant
thus can also “fold” later constant expressions that use x

folding would take place right after the L/R lookup at the
beginning of the algorithm

Applying identities

« during LVN algorithm can also apply any identities involving specific
literals, simplifying expressions
- x+ 0,0+ x becomes x
- x*1,1*x becomes X
- x*0,0*xbecomes O
- X' becomes x
- x° becomes 1
- x<<0, x>>0 becomes x
- x*2"becomes x << n
- X AND x becomes x
- etc

Naming implications

e simplest approach is SSA-style, use a new variable name
for each LHS target, consider problem below:

V=WwW+X

y=w+ Xx//canre-writeasy =v

v=0

z = w + x // could have re-written as z = v, but over-wrote v

» otherwise need to be very careful about use of our hash
table records, since LVN values associated with variables
can change over time

Indirection and ambiguity (again!)

« as discussed earlier, pointers and array indexing can
complicate attempts to identify LVNs, e.q.

- a=b+c
- *ptr=25
- d=a
- e=b
- f=c
 the pointer use could modify a, b, or c

« compiler would have to proceed as if each of them has
changed, even though at most one of them actually would

Parallelization opportunities

 many processors have multiple adders, and can carry out
two (or more) arithmetic operations in a single cycle

« permits parallelization of parts of expression evaluation
- w+x+y+d// usually 3 cycles, for the 3 additions
e could parallelize:

- adder1 does tmp1 = (w+x) while adder2 does tmp2 = (y+d)
- then one of them does tmp1+tmp2

* thus just 2 cycles
» bigger parallelization potential for larger expressions

Rewriting and parallelizing

* For expressions that use a single operator type, that is
both commutative and associative, we can rewrite

operands in any order

e provides lots of opportunities to improve
- x+3+y+9+z+200
- default sequential handling left-to-right, 5 cycles
e group the constants, apply identities, and restructure
- (x+y)+(z+212)
- done in 2 cycles using 2 adders

Tree-balancing

think of expression in abstract syntax tree form
we want to balance the tree, minimizing its height
expressions represented as sequences of T=L op R

need to know where a value computed earlier is used later
(i.,e. LVNs), so build these dependencies into the tree

will try to parallelize across instruction sequences

Tree balancing process

« don't want tree revision to change any observable values,
to be any longer than original, nor to look outside the block

* build the dependency tree

 try to re-balance it

- find roots of relevant subtrees, whose operations consist of just
one form of associative, commutative operator

* re-write the transformed code
- apply constant folding, identities as we re-write

Tree balancing approach

e assuming we've identified roots of target trees, and
ordered by precedence of the tree operators (highest first)

e as we process statements, we'll queue up values (variable
names and literals) for later processing

« as we re-write the trees, we rank elements to ensure code
that calculates value X is output before code that uses X

- constants get rank 0, variables get rank 1, rank for expressions
Is the sum of their subtree ranks

- lower-ranked terms get produced before higher-ranked terms

Tree balancing algorithm

e assuming we've identified the roots of relevant subtrees
(i.e. ops of a single type, commutative and associative)

e root nodes initially assigned rank -1
- for each root node, R, call Balance(R)
« Balance(node n) // nrepresents T=Lop R
- ifn'srank is -1 (i.e. not yet processed):
e Q={} // queue of values used in the subtree

« rank(T) = flatten(L,Q) + flatten(R,Q)
* rebuild(n, Q, op) // writes balanced version of the operands

Flatten(n,Q)

. f
. f
. f

atten adds operands from the subtree to the queue
atten returns the rank of the subtree
atten(node n, queue Q) // node is a value or an op

if n is a constant: assign rank 0, enqueue
elseif n is a previously assigned var: assign rank 1, enqueue
elseif n is a root: call Balance(n), enqueue

else n is operator node, with L and R operands
 call flatten(L,Q), flatten(R,Q), rank is sum
return rank of n

Rebuild(root,Q,op)

 called after Balance has put the operands for op into Q
while Q not empty
pull next 2 args, L, R, from Q // just binary operators so far
if both are constants:
calculate result
if Q is now empty
emit code: “root = result”, assign 0 as root's rank
else enqueue result with a rank of O
/] else case on next slide

Rebuild(n,Q,op) continued

else // at least one is not a constant
if Q is now empty result = n,
else result = generateNewName()
emit code “result = L op R”, rank is rank(L) + rank(R)
if Q isn't empty yet then enqueue result
/[n is a subtree, so its computed result must be getting used later

Example

c=a+b
e=b+d
f=a+c
g=2+5
h=3+g
i=2+f
k=e+f

// h +k
Pt L
*2 tK /;&\

| / PN

ideally: re-group k's 3,2,5 into a single constant 10,
and restructure trees to be height 3 instead of 4

Balance(i)

flatten(2) + flatten(f)

- 2 s const, rank 0, gets enqueued
flatten(f) calls flatten(a) + flatten(c)

- var a, rank 1, gets enqueued

flatten(c) calls flatten(a) + flatten(b)

- vars a and b, each rank 1, get enqueued
rebuild(i, [b,a,a,2], +) emits

- tmpl = b + a enqueue enqueues by rank,

_ lower ranks go in front of higher
- tmpz = a + 2 new values in front of old (of equal rank)
- 1 = tmpl + tmp?2

Balance(k)

flatten(e) + flatten(h)

flatten(e) calls flatten(b), flatten(d)
- vars b, d get rank 1, enqueued
flatten(h) calls flatten(3), flatten(g)
- const 3 gets rank 0, enqueued

- flatten(g) calls flatten(2), flatten(5)

- consts 2,5 get rank 0, enqueued

rebuild(k, [5,2,3,d,b], +) folds the constants and emits
- tmp3 = 10 + d
-k =Db + tmp3

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21

