

Regional optimization

● regional optimizations look at some segment of code “around” one or
more blocks (will refer to the regions as extended blocks)
● in our data analysis section we'll look at ways to identify extended
blocks, but each typically has a “gateway” statement (one you must
pass through to enter the region), and expands to capture most local
branching (e.g. for a loop)
● some regional optimizations using another number value scheme,
based on extensions to our basic blocks
● a variety of other optimizations apply specifically to loops, under the
right circumstances

Superlocal value numbering

● like our LVN scheme for local optimization, expanded now to
look at an extended basic block, EBB

● represent the EBB as a control flow graph, with basic blocks as
the nodes and directed edges between them

● for SVN, basic blocks with multiple entry edges can only appear
as the 'root' block in an EBB

● within an EBB, we can take each linear path of the EBB and
apply local value numbering (and resulting optimizations) to it

● finds cross-block optimizations missed by single block LVN

Example: divide into EBBs and paths

● EBB1:
b0, b2,
b4, b5

● EBB2:
b1, b3

● EBB3:
b6

● EBB4:
b7, b8

b0

b1
b2

b3
b4 b5

b6

b7

b8

Possible LVN paths within EBBS
 path1: b0, b2, b4
 path2: b0, b2, b5
 path3: b1, b3
 path4: b6
 path5: b7, b8

each could be optimized as a simple
linear block

*could improve compiler efficiency by
recording b0+b2 optimizations while
analyzing path 1, so they didn't have to
be deveoped from scratch in path2

Loop optimization: unrolling

● replicate body multiple times, and run loop less often
● e.g. original loop:

 for (i = 0; i < 1000; i++) { ...use i...; }

● gets replaced with

 for (i = 1; i < 1000; i+=4) {

 ...use i...; ...use i...;

 ...use i...; ...use i...;

 }

Pros/cons of loop unrolling

● cuts down number of times we test the loop condition and
jump to start of loop (runs faster)

● the repetitive blocks of ...use i... are highly likely to be
suitable for local optimization

● might also improve locality for cache hit ratio, and/or
instruction cache (if one is in use)

● cost: adds extra lines of source code (larger executable)

unrolling while loop

while (x) { body }

● can get unrolled as something like
while (x) {

 body

 if (!x) break;

 body

 if (!x) break;

 body

}

moving invariants outside loop

● suppose original loop has invariant test condition inside
 while (x) { if (y) thing1; else thing2; }

● move the invariant test outside the loop
 if (y) { while (x) thing1; } else { while (x) thing2; }

● improves execution speed, only tests y once
● might improve while loop optimization
● might improve cache hit ratio during while loop execution

loop splitting

● take large loop and break into sequence of smaller loops
● again, goal is to improve local optimizations, cache hits
 for (i = 0; i < 1000; i++) { body }

● could be rewritten
 for (i = 0; i < 250; i++) { body }

 for (i = 250; i < 500; i++) { body }

 for (i = 500; i < 750; i++) { body }

 for (i = 750; i < 1000; i++) { body }

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

