Regional optimization

* regional optimizations look at some segment of code “around” one or
more blocks (will refer to the regions as extended blocks)

* in our data analysis section we'll look at ways to identify extended
blocks, but each typically has a “gateway” statement (one you must
pass through to enter the region), and expands to capture most local
branching (e.g. for a loop)

* some regional optimizations using another number value scheme,
based on extensions to our basic blocks

e a variety of other optimizations apply specifically to loops, under the
right circumstances



Superlocal value numbering

 like our LVN scheme for local optimization, expanded now to
look at an extended basic block, EBB

« represent the EBB as a control flow graph, with basic blocks as
the nodes and directed edges between them

« for SVN, basic blocks with multiple entry edges can only appear
as the 'root' block in an EBB

« within an EBB, we can take each linear path of the EBB and
apply local value numbering (and resulting optimizations) to it

 finds cross-block optimizations missed by single block LVN



Example: divide into EBBs and paths

- EBBT: Possible LVN paths within EBBS
b0, b2, path1: b0, b2, b4
b4, b5 path2: b0, b2, b5
_ path3: b1, b3
« EBB2: path4: b6
b1, b3 path5: b7, b8
« EBBS3: each could be optimized as a simple
b6 linear block
- EBBA4: *could improve compiler efficiency by
b7, b8 recording bO+b2 optimizations while

analyzing path 1, so they didn't have to
be deveoped from scratch in path2




Loop optimization: unrolling

 replicate body multiple times, and run loop less often
e e.g. original loop:
for (1 =0; 1 < 1000; 1++) { ...use i1...; }
« gets replaced with
for (i =1; i < 1000; i+=4) {
...use 1...; ...use 1...;
...use 1...; ...use 1...;



Pros/cons of loop unrolling

cuts down number of times we test the loop condition and
jump to start of loop (runs faster)

the repetitive blocks of ...use i... are highly likely to be
suitable for local optimization

might also improve locality for cache hit ratio, and/or
instruction cache (if one is in use)

cost: adds extra lines of source code (larger executable)



unrolling while loop

while (x) { body }

e can get unrolled as something like
while (x) {

body

if (I1x) break;

body

1f (Ix) break;

body



moving invariants outside loop

e suppose original loop has invariant test condition inside
while (x) { if (y) thingl; else thing2; }

 move the invariant test outside the loop
1f (y) { while (xX) thingl; } else { while (x) thing2; }

e improves execution speed, only tests y once
* might improve while loop optimization
* might improve cache hit ratio during while loop execution



loop splitting

« take large loop and break into sequence of smaller loops

e again, goal is to improve local optimizations, cache hits
for (1 = 0; 1 < 1000; i++) { body }

e could be rewritten
for (i1 = 0; i < 250; i++) { body }
for (1 = 250; 1 < 500; 1++) { body }
for (1 = 500; 1 < 750; i++) { body }
for (1 = 750; 1 < 1000; i++) { body }



	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

