

Intro to optimizations

● target code generated from internal/intermediate representation
for the program in question is rarely in optimal form
● opportunities for “improvement” creep into the IR in many ways
● original source code may have contained inefficiencies
● initial generic transformations from HLL source code statements
to the target language doesn't account for wider context, chances
to improve based on things “outside” the immediate statement
● target language instructions might provide specific pitfalls and/or
opportunities for optimization not available in the source

Goals of optimization

● usually execution speed is a priority
● other possible goals may include

– size of memory used

– number of memory accessed made

– size of executable produced

– response time to external events
– time required to compile

● often trade-off poorer performance in one area to get
better performance in another

Opportunities for optimization

● We've seen some, there are many more, e.g.:
– eliminating redundant computations

– eliminating redundant loads from memory

– taking advantage of memory heirarchy

– inlining functions

– unrolling, splitting, inverting, interchanging loops

– eliminating unreachable code, unused variables

– reducing jump counts

– parallelizing

– adding subroutines to eliminate redundancy

Safety: equivalent behaviour

● any optimization involves changing the code
● want to ensure that the changes still produce equivalent

behaviour
– will treat two expressions as equivalent if, in the context of the

program, they produce identical results
● aside: the transformations generally make it more difficult for

the programmer to see the relationship between the original
source code and the target language code produced

Scope of optimizations

● can apply optimizations to different “layers” of code:
– local: (sequential) block level
– regional: multiple blocks e.g. Loops, if/else structures
– intraprocedural: subroutine level (aka global)

– interprocedural: whole program

● later in the process will also consider:
– peephole: tiny window of several generated instructions

Local optimizations

● a single block of sequential statements (single entry point,
single exit point)

● easier to analyze because we know every instruction is
always run, and run in a fixed order

● some common opportunities:
– eliminating redundant operations

– constant folding
– selection of naming schemes

– balancing tree heights for parallelization

Regional optimizations

● span more than a blocks, e.g. code for a loop, switch, etc
● compiler needs to select a region (extending blocks)
● many loop optimizations take place here

– interchange (swap inner/outer nested loops)

– inversion (switching top/bottom tested)
– unswitching (swap inner/outer if statement and loop)

– splitting (partition big loop into multiple smaller ones)

– unrolling (replace loop with sequence of statements)

– moving invariants out of the loop body

Intraprocedural optimizations

● cover a whole subroutine (a.k.a. global, to be confusing)
● reveals coordination of data across blocks/regions
● some form of data flow analysis needed
● optimizations might include

– eliminating uninitialized variables
– eliminating unused variables

– eliminating dead code

– taking advantage of asymmetric branch costs

Interprocedural optimizations

● whole-program optimizations
● get the whole picture, but using less specific detail about

the inner workings (somewhat top-down view)
● call graphs and dataflow analysis again
● optimizations might include

– inline expansions

– revised handling of caller/callee responsibilities

– subroutine placement (localize funcs that call each other)

Code gen optimizations

● later considerations, once the code generation is nearly
complete, may revisit last-stage optimizations
– instruction selection and scheduling

– peephole optimizations

– register allocation
– recalculating values to avoid memory loads

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

