Scanning/tokenizing

e Scanning is the process of reading the input characters from the
source and transforming them into a stream of recognized tokens

e Scanners can be auto-generated from a grammar (as we're
doing with lex in the labs) or crafted by hand

« Hand crafted scanners can be more efficient, and require
relatively few updates if the source language is stable

« Auto-generated scanners can be easily/automatically produced,
so may be preferable if development speed is more important
than run-time efficiency

Microsyntax

e language rules regarding tokenization are a small subset
of overall language rules, sometimes called a microsyntax

« As characters are read, they are aggregated into words or
tokens, relying on the microsyntax to identify the end of a
token or the transition to a new token

« Some tokens will be identified by patterns, others as
specific/exact keywords (may be identified by keyword
dictionary, or encoded as part of microsyntax)

« Scanners generally implemented to run in time
proportional to the number of input characters

Recognizing tokens

» Patterns for a token can be described with a regular
expression, and recognized with a corresponding finite
state machine

* Given FSMs for each token type, we will eventually build
one overall FSM to identify all token types

 That FSM can be optimized and transformed to actual
scanner code, either automatically or by hand (we'll look at
both approaches)

Finite state machines

e Arecognized alphabet

* Aunique start state (for no characters read yet)

» A set of states (matching patterns of characters “en route”
to an accept state)

e A transition function: if in state A and we see character C,
identifies which state we should switch to

* A subset are accepting states: where we have read a valid
token (which accept state tells us which token type)

 FSM to recognized identifiers that begin with an alpha,
followed by any number of alphanumerics

* Note we want the fsm to continue reading/aggregating
chars as long as we stay in an accept state

 |f token types overlap (e.g. ldentifiers and keywords) the
code at the accept state can be adjusted to return the
highest priority token type (e.g. the keyword)

Example FSM

« Assuming any other transitions go to reject state

/N/ /;\ a-zA-Z N/ —
4 \

a-zA-Z0-9

Example: more token types

* FSMs to recognize keywords if and int
B o =

| N
~@-@©

Example: combined FSM

* Recognizes all three token types

Simplistic conversion to code

state = s0
c = readChar()
while (not(delimiter(c)) && (state != reject)) {
if ((state = s0) && (c =="i")) state = s1
else if ((state == s0) && (alphanum(c)) state = s2

... efc
else state = reject
c = readChar()

}
/I if end in A1, A2, or A3 we found a token

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

