

Scanning/tokenizing

● Scanning is the process of reading the input characters from the
source and transforming them into a stream of recognized tokens
● Scanners can be auto-generated from a grammar (as we're
doing with lex in the labs) or crafted by hand
● Hand crafted scanners can be more efficient, and require
relatively few updates if the source language is stable
● Auto-generated scanners can be easily/automatically produced,
so may be preferable if development speed is more important
than run-time efficiency

Microsyntax

● language rules regarding tokenization are a small subset
of overall language rules, sometimes called a microsyntax

● As characters are read, they are aggregated into words or
tokens, relying on the microsyntax to identify the end of a
token or the transition to a new token

● Some tokens will be identified by patterns, others as
specific/exact keywords (may be identified by keyword
dictionary, or encoded as part of microsyntax)

● Scanners generally implemented to run in time
proportional to the number of input characters

Recognizing tokens

● Patterns for a token can be described with a regular
expression, and recognized with a corresponding finite
state machine

● Given FSMs for each token type, we will eventually build
one overall FSM to identify all token types

● That FSM can be optimized and transformed to actual
scanner code, either automatically or by hand (we'll look at
both approaches)

Finite state machines

● A recognized alphabet
● A unique start state (for no characters read yet)
● A set of states (matching patterns of characters “en route”

to an accept state)
● A transition function: if in state A and we see character C,

identifies which state we should switch to
● A subset are accepting states: where we have read a valid

token (which accept state tells us which token type)

Example

● FSM to recognized identifiers that begin with an alpha,
followed by any number of alphanumerics

● Note we want the fsm to continue reading/aggregating
chars as long as we stay in an accept state

● If token types overlap (e.g. Identifiers and keywords) the
code at the accept state can be adjusted to return the
highest priority token type (e.g. the keyword)

Example FSM

● Assuming any other transitions go to reject state

S0 A1
a-zA-Z

a-zA-Z0-9

Example: more token types

● FSMs to recognize keywords if and int

s1

s0 s1 s2

A2

A3

s0
i f

i n t

Example: combined FSM

● Recognizes all three token types

s0

A2

A3A1

s1

s2i f

n

t

a-hj-zA-Z

a-eg-zA-Z0-9

a-zA-Z0-9

a-zA-Z0-9

a-zA-Z0-9

Simplistic conversion to code

state = s0

c = readChar()

while (not(delimiter(c)) && (state != reject)) {

 if ((state = s0) && (c == 'i')) state = s1

 else if ((state == s0) && (alphanum(c)) state = s2

 ... etc

 else state = reject

 c = readChar()

}

// if end in A1, A2, or A3 we found a token

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9

