

Subroutine abstraction

● lexically-scoped subroutines a key part of most programming
languages since Algol (~1958)
● need an effective approach to model them within our
intermediate representations
● need to account for separate compilation + linking (an assumed
part of most large systems, permitting modularity, library use, etc)
● must thus be able to define/declare items in one compilation unit
yet refer to them from another: abstraction must account for this

Procedure call abstraction

● when caller invokes callee
– preserve caller's environment
– map set of arguments from caller's namespace to callee's
– set up callee's environment, execute, clean up

● on completion
– possibly return one or more values from caller to callee
– restore caller's environment

– resume execution in caller immediately after point of call

Subroutine namespaces

● generally each subroutine has its own new/protected
namespace

● local declarations take precedence over external ones
● parameters generally used to map data from caller's

namespace to data in callee's space
● mappings will need to support various addressing modes

(e.g. pass-by-value, pass-by-reference)

External interfaces

● need an agreed set of rules for handling references across
compilation units

● Need to identify rules on mapping caller/callee
namespaces, preserving/restoring caller environment, and
setting up/tearing down callee environment

● typically agreed upon by key compiler developers and the
language designers very early in language design

Compiler actions

● Compiler must identify storage layout for program
components and generate the runtime code that will set up
and clean up that storage

● static/global storage layout determined at compile time, as
offsets from a base address to be determined when
executable loaded into memory

● local storage layouts determined at compile time, but
needs to generate the runtime code that will actually set up
/tear down the space during execution (e.g. code to set
up/tear down a stack frame etc)

Activations

● will refer to each call to a subroutine as an activation
● calls made but not yet complete referred to as active
● compiler must ensure adequate information is maintained

for all active activations
● typical model is stack based, e.g.

– save current environment on stack

– push space for return value

– push parameters
– push space for local variables, etc

Possible division of responsibility

● Caller sets up:

– preserve desired registers

– evaluate actual parameters

– determine return address

– ensure pass-by-ref parameters are
in memory (not registers)

– set up parameters

● Callee sets up:

– set up local variabless

– rearrange registers as needed

● Callee executes

● Callee cleans up:

– delete locally allocated space

– restore registers

– store return value

● Caller cleans up:

– return any pass-by-ref params to
registers (if appropriate)

– capture return value

– deallocate parameter space

– restore preserved registers

● Caller resumes execution

More complex options

● could maintain information on entire environment for each
active subroutine

● encapsulate the environment with the call information
● run the active subroutine in the context of its own

environment
● often used in functional languages (e.g. scheme)

Tracking access across scopes

● assuming lexical scoping
– global scope
– file scope
– function scope (possibly nested function declarations)

– block scope (probably nested blocks supported)

● compiler needs a way to refer to declared items across the
various scopes

Scope/offset approach

● number each lexical scope from outermost to innermost,
e.g. global (0), file (1), function foo (2), current block (3)

● each local variable/constant's storage location is at some
offset from the start of that scope's data storage block

● thus to refer to a local data element we use a pair
<scope,offset>

● note that using offsets means we're making some
assumptions about storage sizes

Example: <scope,offset>
int x = 1;

void f() {

 int x = 2;

 float y = 3;

 print(x * y);

}

int main() {

 float y = 4;

 void g() {

 int x = 5;

 print(x,y);

 }

}

scope x y

global <0,0> n/a

body of f <1,0> <1,4>

body of g <2,0> <1,0>

body of main <0,0> <1,0>

*assuming offsets of 4 for both ints and floats,
here not distinguishing between global/file scope,
and scope indices are lexically-based

Parameters and return values

● Need to support source/target language addressing modes
● Most common are pass-by-value, pass-by-reference
● Pass-by-value: evaluate argument before copying value to

parameter storage space

– possible concerns for large data types (e.g. arrays) where this is
time/memory intensive

– Might pass a pointer/reference instead, but adds the need to
safeguard the passed item against corruption by callee

● Pass-by-reference: need to provide some access mechanism from
the caller space to the callee, and ensure callee code uses that
mechanism

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

