

Table-driven scanners

● Uses stock algorithm driven by three tables to simulate the DFA
● Input classification table: given a char, identifies what kind of
character it is relevant to our DFA, e.g. a digit, lowercase alpha,
whitespace, etc
● Transition table: given the current state and the classification for
the current input character, identifies the correct next state
● Token type table: given the ending state, identifies what kind of
token that represents (or invalid: no token recognized)

Example: identifier [A-Z][a-z]+

s1

s2

s0

upperalpha

loweralpha

loweralpha

curr state loweralpha upperalpha other

s0 reject s1 reject

s1 s2 reject reject

s2 s2 reject reject

reject reject reject reject

char class

[a-z] loweralpha

[A-Z] upperalpha

other other

end state type

s0 invalid

s1 invalid

s2 identifier

reject invalid

Transition table

Input classifier
Token type

Notes on the tables

● Division into three tables allows size of each to be
minimized (think database normalization), reducing
memory costs and improving paging/cache performance

● Input classification table can get really large if alphabet is
huge (e.g. Unicode), so might be replaced with
classification functions

Generating tables

● Transition table: start with one char for each column, one
row for each state, fill in as you read DFA. Once table
filled in, collapse identical columns

● Classifier table: the set of chars for each column in
transition table forms one classification group

● Token type table: in the beginning we had one RE for each
token type, then join with |'s to form initial big NFA,
annotate each accept state with matching token type,
retain those annotations during transformation to DFA

The generic algorithm

● Initialization
● Initialize current state, curr = s0
● Initialize current token, tok = “”
● Initialize empty state stack, S
● Push special <END> state on stack

Algorithm: continued

● Part 1: process as many input chars as possible:
● While not in reject state

– Read next char, append to t

– If S is an accept state then clear stack and push S

– Lookup character type

– Given character type and S, lookup next state in transition table
– Set S to new state

Algorithm: continued

● Part II: roll back if necessary
● While S isn't an accept state and isn't <BOTTOM>

– Pop top state off of stack into S

– Chop last char off token

– Roll back one character in input stream

● Lookup token type based on S

Excessive rollback

● Sometimes will be grabbing tiny tokens from front of input
stream, but to do so reads all the way to the end then rolls
back (can be O(n^2) in number of input characters)

● ((xy)+z)|xy
● xyxyxyxy
● ..xyxyxy
●xyxy
●xy

x y z

zx

y

x

Maximal munch scanner

● Uses counter, i, to track current position in input stream
and a table to keep track of which state and input-position
combinations are known cannot reach an accept state

● Initialize table entries to false, later will set some to true
based on what we learn during run of algorithm

state i=0 i=1 i=2 i=...etc..

s0 f f f f

s1 f f f f

s2 f f f f

reject f f f f

Revised algorithm

● Initialization:
● i = 0 (current position in input stream)
● S = s0
● Empty stack
● Push <BOTTOM,i> on stack (a state and position)

Algorithm: continued

● Part 1: reading forward through input
● While not in reject state

– Read next input char, concat to token

– Increment i

– If Failed[S][i] then exit loop

– If S is an accept state then clear stack
– Push <S,i>

– Lookup char type/transition, update S

Revised algorithm: continued

● Part 2: rollback if needed
● While S is not accept state and not <Bottom,0>

– Set Failed[S][i] to true (we just realized it goes nowhere)

– Pop top element off stack, use to update S and i

– Chop last char off token

– Roll back one character in input stream

● Look up resulting token type

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12

