

Top-down parsing

● We start from the root non-terminal for the grammar
● Successively pick and apply derivation rules for non-terminals
that still need to be expanded
● End when we have expanded all non-terminals and the derived
token sequence matches the input sequence
● If no valid expansion rule exists or the token sequences do not
match then back up to the most recent choice point where an
alternate choice is still possible, and try that derivation path
● Fails if we run out of derivation paths without finding a match for
the token sequence

Generic top down algorithm

current = root nonterminal

stack = <NONE>

repeat

 if current is a nonterminal

 pick one of the derivation rules current->x1 x2 ... xn

 push xn..x2 onto stack (right-to-left) and set current = x1

 else if current matches next input token

 pop top of stack into current and read next input token

 else backtrack

if stack empty and input has all been read then accept, otherwise reject

Example derivation sequence

● Permitted tokens are: a b c d e
● Grammar rules are:
● S --> XY
● X --> abc | eXe
● Y --> cY | d
● String we are trying to match is: eabceccd

Derivation: part 1

current nexttoken rest of input stack (top on left) notes

S e abceccd - pick S-->XY

X e abceccd Y- pick X-->eXe

e e abceccd XeY- matches

X a bceccd eY- Pick X-->abc

a a bceccd bceY- matches

b b ceccd ceY- matches

c c eccd eY- matches

Derivation: part 2

e e ccd Y- matches

Y c cd - pick Y-->cY

c c cd Y- matches

Y c d - pick Y-->cY

c c d Y- matches

Y d - - pick Y-->d

d d - - matches

- - - - ACCEPT

Backtrack-free grammars

● In fact, many grammars can be parsed without the need
for backtracking, particularly if we allow the parser to look
at the upcoming token in the input sequence (lookahead)

● Sometimes we can rewrite our existing grammar to put it in
a backtrack-free form

● For grammars that cannot eliminate backtracking, we can
still consider implementations to reduce its cost

Left recursion

● Left recursive rules have form X --> Xsomething
● Parser can get locked into infinite loop of accepting this

same rule, trying to expand leftmost nonterminal
● Can also have indirect left recursion

– W-->X
– X-->Y

– Y-->WZ

● Want to eliminate both direct and indirect left recursion
from our grammar

Consider
W-->X-->Y-->WZ-->XZ-->YZ-->WWZ--> etc

Eliminate direct left recursion

● Done by introducing extra nonterminal, here N
● X --> X b | a
● (i.e. X describes ab*)
● X --> a N
● N --> b N | nil
● (here using nil to represent empty sequence, which gets

rid of the final trailing N in each derivation)

Eliminating indirect left recursion

● Works on grammars that don't have cycles or nil rules
● Give all the non-terminals an arbitrary ordering, 1..k
● For i = 1..k

– For j = 1..(i-1)
● For each rule rule Ni->NjX (remember j<i) replace it with

– Ni->Y1X | Y2X | Y3X ... where Y1, Y2, Y3 are RHS of Nj rules,
– i.e. The grammar has rules Nj->Y1 | Y2 | Y3 | ...

– After inner for loop, eliminate any direct left recursion on Ni

● Done! Essentially inserting rules to bypass the recursive
rules, replacing them with ones to generate the results

Predictive grammars

● Used for backtrack-free parsing
● When picking which rule to apply next you get to look at

next input token, and select from just those rules whose
RHS can generate that token

● If a predictive grammar is backtrack free then it can be
efficiently parsed using recursive parsers (which we'll look
at in our next session)

● Unfortunately, not all grammars are backtrack free

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10

