

Git for csci labs/projects

● Most of our csci courses use a custom git setup to distribute
and collect labs, projects, and assignments
● Students enrolled in a course will automatically be given
access to the appropriate git repositories (edit: if you register
in a class after the first day of the semester it may take a few
days for your access permissions to be updated)
● Here we’ll walk through the steps you’ll need to follow to
obtain, work on, and submit your labs using our git process

What is git?

● Git is version control software, allowing developers to keep track of changes to
projects involving multiple versions of multiple files over an extended period of
time

● The developer is thus able to examine what changed and when, “roll back” to
specific versions, create different branches/versions of the project, etc

● e.g. suppose you have to work on a project with many files, multiple versions (1.0,
1.1, 2.0, 2.01, 2.1, etc etc) on a variety of platforms ... somehow you have to be
able to easily identify the right version of the right file for the right platform

● Projects are organized into repositories – basically just a directory containing all
the files and subdirectories for the project, but with some extra git control and
tracking files hidden in there somewhere

The csci git server

● The instructor will post work, and you will submit work, through
a special csci git server, with the general idea as follows:

● The instructor posts the initial version of the project as a git repository
on the csci git server

● The student makes their own copy of the repository also on the csci git
server (see the “fork” step later)

● The student now copies (clones) from their copy to their working space
on otter, where they make changes (see edit/add/commit later)

● The student then “pushes” their changes back to the csci git server,
where the instructor can access it for marking later

Making your server-side copy (fork)

● To initially create your own copy of the original, you need to know the course id (e.g. csci160, csci265, etc)
and the name of the repository (e.g. lab1, project, assign7, etc)

● The instructor will let you know what it is called, but you can also get a list of the available repositories
using:

ssh csci info
● If the course was csci265 and the repo was lab1, the fork command would then be

ssh -x csci fork csci265/lab1 csci265/$USER/lab1

Note the command is saying copy from csci265/lab1 to csci265/YOURNAME/lab1, the $USER variable
automatically expands with your userid

● Be careful with the command, it’s easy to make typos! If something goes wrong, see the following URL for
troubleshooting:

csci.viu.ca/~wesselsd/guides/gitstudent.html

Cloning to otter to work on it

● You can’t work on the files directly on the git server, you need
to clone them to otter, work on them their, and send (push)
the changes back

● Use cd to go to whereever you want your local copy to exist
on otter, then use the following (again here written for course
csci265 and repository lab1):

git clone csci:csci265/$USER/lab1
● See the url from the previous slide for troubleshooting

Updating your copy on otter

● Make whatever changes you want in your copy on otter
● When you’re happy with the state of a file, use the following command to

“add” the updated version

git add filename
● When you’re happy with all of the added files, you can create a “commit

point”, basically a saved state of the project:

git commit -m “describe what has changed”
● If you forget to add or commit, those changes won’t get included in the

next step

Sending the changes to the server

● To copy your latest commited version back to the git
server, where the instructor can access it, use

git push
● If you forget to push then the instructor won’t see your

changes
● Extra adds, commits, or pushes aren’t a problem:

forgetting any one of them is!

Checking your repo status

● You can check the status of your repository using

git status
● “up to date with origin/master” is good news

[Note: hopefully git will soon drop the “master” term for something like
“primary”]
● “ahead of origin/master by N commits” means you need to push
● “changes to be commited” means you need to commit and push
● “untracked files” means you need to add, commit, and push
● Additional links and info are available at csci.viu.ca/~wesselsd/guides/gitstudent.html

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8

