

Linux file paths

● (Nearly?) anyplace you can specify a file or directory you
can also include the path to that file or directory
● Paths can be expressed as absolute paths or relative paths
● Relative paths are evaluated using your current directory as
the starting point
● Absolute paths are evaluated using the root of the system as
the starting point

Absolute paths

● The root of the overall file system is indicated simply as /

e.g. to switch from your current directory to the root use:
cd /

● Within the root directory on our system you’ll find
subdirectories like bin, dev, lib, home, usr, etc

● Absolute paths have the full specification of how to get
from the root to the desired file or directory. For example
your own home directory is probably located along a path
something like /home/student/yourusername

● If you enter the command pwd it will show you the
absolute path to your current location in the file system

Bash and the ~ (tilde)

● When you enter paths that start with the tilde, ~, bash
assumes what comes next is a username and
expands/replaces the ~ with the absolute path to their
home directory, e.g. ~davestu/foo becomes
/home/student/davestu/foo

● If there isn’t a username, e.g. cd ~ or cd ~/bin then bash
assumes you mean your own home directory

Relative paths

● Paths that do not begin with a / or ~ are treated as relative
paths

● Relative paths are evaluated starting from your current
directory.

● For example, if you are in directory
/home/student/davestu

and you use the command cd foo

then it is the equivalent of cd /home/student/davestu/foo

The use of . and ..

● When used as a pathname, the . represents the current
directory

● When used on its own, the .. represents the parent of the
current directory

● When used within a path, the .. represents the parent of
the directory represented to that point in the path, thus the
command cd ../.. means change to the parent of the
parent of the current directory

Symbolic links

● in addition to files and directories, you may also encounter
symbolic links

● these are links from one directory to either a file or another
directory

● e.g. suppose we have two subdirectories: test and other,
and the test directory contains a file named foo
– inside other we can create a link to foo using

● ln -s ../test/foo

– if we run ls when in other we'll see foo listed, but this is actually
just a link to the real foo, not an entirely separate copy

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

