/O redirection

* Most of the time, programs display their output (stdout) to
the monitor and take their input (stdin) from the keyboard

* There is also an error stream (stderr) that some programs
take advantage of

* From the command line, you are able to seperately redirect
where a program’s stdin comes from, and/or where its stdout
goes to, and/or where its stderr goes to




Redirecting stdin with <

* |f we want a program to read its input from a file instead of
the keyboard, we can use “program < filename”

* The program will read sequentially through the file, treating

whitespace in the file in the exact same way as if the user
had entered it

 Of course, the content of the file needs to be consistent
with what the program expects/can handle



Redirecting stdout with >

* Similarly, we can send a program output to a file instead of
the monitor, e.g. “progname > filename”

* |If the file doesn’t exist yet then this will create it, otherwise it
will replace the old version of the file

* Of course, if the program goes into an infinite loop while
producing output then you’re going to run into quota issues...

 Combinations are also possible, e.g. “prog < infile > outfile” to
read from the first file and write to the second



Piping output between programs

* We can use the output from one program as the input to
another using the pipe (vertical bar), e.g. “progl | prog2”

* This can also be combined with > and <, e.g.
progl < infile | prog2 > outfile

runs progl using data from infile, sends its output to prog2
to be used as input there, then prog2’s output goes to
outfile



Redirecting stderr

e The > Is used to redirect stdout

* We can instead redirect stderr using 2> or redirect both of
them using &>

prog > file # stdout goes to file, stderr goes to screen
prog 2> file # stderr goes to file, stdout goes to screen
prog > file # both go to file

prog # both go to screen






	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6

